Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 55

1.

Recapitulating the Size and Cargo of Tumor Exosomes in a Tissue-Engineered Model.

Villasante A, Marturano-Kruik A, Ambati SR, Liu Z, Godier-Furnemont A, Parsa H, Lee BW, Moore MA, Vunjak-Novakovic G.

Theranostics. 2016 May 21;6(8):1119-30. doi: 10.7150/thno.13944. eCollection 2016.

2.

Ewing's Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue.

Parafioriti A, Bason C, Armiraglio E, Calciano L, Daolio PA, Berardocco M, Di Bernardo A, Colosimo A, Luksch R, Berardi AC.

Int J Mol Sci. 2016 Apr 30;17(5). pii: E656. doi: 10.3390/ijms17050656.

3.

Inhibition of SOX2 induces cell apoptosis and G1/S arrest in Ewing's sarcoma through the PI3K/Akt pathway.

Ren C, Ren T, Yang K, Wang S, Bao X, Zhang F, Guo W.

J Exp Clin Cancer Res. 2016 Mar 11;35:44. doi: 10.1186/s13046-016-0321-3.

4.

A peripheral primitive neuroectodermal tumor in the larynx: A case report and literature review.

Ijichi K, Tsuzuki T, Adachi M, Murakami S.

Oncol Lett. 2016 Feb;11(2):1120-1124. Epub 2015 Dec 9.

5.

Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.

Redini F, Heymann D.

Front Oncol. 2015 Dec 23;5:279. doi: 10.3389/fonc.2015.00279. eCollection 2015. Review.

6.

Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9.

Fidaleo M, Svetoni F, Volpe E, Miñana B, Caporossi D, Paronetto MP.

Oncotarget. 2015 Oct 13;6(31):31740-57. doi: 10.18632/oncotarget.5033.

7.

Endoplasmic reticulum targeting in Ewing's sarcoma by the alkylphospholipid analog edelfosine.

Bonilla X, Dakir el-H, Mollinedo F, Gajate C.

Oncotarget. 2015 Jun 10;6(16):14596-613.

8.

A Unique Case of Primary Ewing's Sarcoma of the Cervical Spine in a 53-Year-Old Male: A Case Report and Review of the Literature.

Holland MT, Flouty OE, Close LN, Reddy CG, Howard MA 3rd.

Case Rep Med. 2015;2015:402313. doi: 10.1155/2015/402313. Epub 2015 Feb 23.

9.

EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma.

Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML, Rossetti NE, Boonseng WE, Oksuz O, Cook EB, Formey A, Patel A, Gymrek M, Thapar V, Deshpande V, Ting DT, Hornicek FJ, Nielsen GP, Stamenkovic I, Aryee MJ, Bernstein BE, Rivera MN.

Cancer Cell. 2014 Nov 10;26(5):668-81. doi: 10.1016/j.ccell.2014.10.004. Epub 2014 Oct 30.

10.

3D tissue-engineered model of Ewing's sarcoma.

Lamhamedi-Cherradi SE, Santoro M, Ramammoorthy V, Menegaz BA, Bartholomeusz G, Iles LR, Amin HM, Livingston JA, Mikos AG, Ludwig JA.

Adv Drug Deliv Rev. 2014 Dec 15;79-80:155-71. doi: 10.1016/j.addr.2014.07.012. Epub 2014 Aug 7. Review.

11.

Identification of chromosomal translocation hotspots via scan statistics.

Silva IT, Rosales RA, Holanda AJ, Nussenzweig MC, Jankovic M.

Bioinformatics. 2014 Sep 15;30(18):2551-8. doi: 10.1093/bioinformatics/btu351. Epub 2014 May 23.

12.

Genetic signature of histiocytic sarcoma revealed by a sleeping beauty transposon genetic screen in mice.

Been RA, Linden MA, Hager CJ, DeCoursin KJ, Abrahante JE, Landman SR, Steinbach M, Sarver AL, Largaespada DA, Starr TK.

PLoS One. 2014 May 14;9(5):e97280. doi: 10.1371/journal.pone.0097280. eCollection 2014.

13.

Bioengineered human tumor within a bone niche.

Villasante A, Marturano-Kruik A, Vunjak-Novakovic G.

Biomaterials. 2014 Jul;35(22):5785-94. doi: 10.1016/j.biomaterials.2014.03.081. Epub 2014 Apr 18.

14.

Characterization of human mesenchymal stem cells from ewing sarcoma patients. Pathogenetic implications.

Amaral AT, Manara MC, Berghuis D, Ordóñez JL, Biscuola M, Lopez-García MA, Osuna D, Lucarelli E, Alviano F, Lankester A, Scotlandi K, de Álava E.

PLoS One. 2014 Feb 3;9(2):e85814. doi: 10.1371/journal.pone.0085814. eCollection 2014. Erratum in: PLoS One.2014;9(4):e94455.

15.

MicroRNA function and dysregulation in bone tumors: the evidence to date.

Nugent M.

Cancer Manag Res. 2014 Jan 7;6:15-25. doi: 10.2147/CMAR.S53928. Review.

16.

EWS-FLI-1 regulates the neuronal repressor gene REST, which controls Ewing sarcoma growth and vascular morphology.

Zhou Z, Yu L, Kleinerman ES.

Cancer. 2014 Feb 15;120(4):579-88. doi: 10.1002/cncr.28555. Epub 2014 Jan 10.

17.

APLP2 regulates the expression of MHC class I molecules on irradiated Ewing's sarcoma cells.

Peters HL, Yan Y, Solheim JC.

Oncoimmunology. 2013 Oct 1;2(10):e26293. Epub 2013 Oct 8.

18.

Blocking SDF-1α/CXCR4 downregulates PDGF-B and inhibits bone marrow-derived pericyte differentiation and tumor vascular expansion in Ewing tumors.

Hamdan R, Zhou Z, Kleinerman ES.

Mol Cancer Ther. 2014 Feb;13(2):483-91. doi: 10.1158/1535-7163.MCT-13-0447. Epub 2013 Nov 26.

19.

Molecular mechanisms of ETS transcription factor-mediated tumorigenesis.

Kar A, Gutierrez-Hartmann A.

Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):522-43. doi: 10.3109/10409238.2013.838202. Epub 2013 Sep 25. Review.

20.

Amyloid precursor-like protein 2 suppresses irradiation-induced apoptosis in Ewing sarcoma cells and is elevated in immune-evasive Ewing sarcoma cells.

Peters HL, Yan Y, Nordgren TM, Cutucache CE, Joshi SS, Solheim JC.

Cancer Biol Ther. 2013 Aug;14(8):752-60. doi: 10.4161/cbt.25183. Epub 2013 Jun 26.

Items per page

Supplemental Content

Write to the Help Desk