Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 20

1.

Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology.

Beer NL, Gloyn AL.

F1000Res. 2016 Jul 15;5. pii: F1000 Faculty Rev-1711. doi: 10.12688/f1000research.8682.1. eCollection 2016. Review.

2.

Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

Cagalinec M, Liiv M, Hodurova Z, Hickey MA, Vaarmann A, Mandel M, Zeb A, Choubey V, Kuum M, Safiulina D, Vasar E, Veksler V, Kaasik A.

PLoS Biol. 2016 Jul 19;14(7):e1002511. doi: 10.1371/journal.pbio.1002511. eCollection 2016 Jul.

3.

RNA-sequencing of WFS1-deficient pancreatic islets.

Ivask M, Hugill A, Kõks S.

Physiol Rep. 2016 Apr;4(7). pii: e12750. doi: 10.14814/phy2.12750.

4.

New insights from monogenic diabetes for "common" type 2 diabetes.

Tallapragada DS, Bhaskar S, Chandak GR.

Front Genet. 2015 Aug 7;6:251. doi: 10.3389/fgene.2015.00251. eCollection 2015. Review.

5.

A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome.

Lu S, Kanekura K, Hara T, Mahadevan J, Spears LD, Oslowski CM, Martinez R, Yamazaki-Inoue M, Toyoda M, Neilson A, Blanner P, Brown CM, Semenkovich CF, Marshall BA, Hershey T, Umezawa A, Greer PA, Urano F.

Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5292-301. doi: 10.1073/pnas.1421055111. Epub 2014 Nov 24.

6.

Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression.

Zatyka M, Da Silva Xavier G, Bellomo EA, Leadbeater W, Astuti D, Smith J, Michelangeli F, Rutter GA, Barrett TG.

Hum Mol Genet. 2015 Feb 1;24(3):814-27. doi: 10.1093/hmg/ddu499. Epub 2014 Sep 30.

7.

Pancreatic and duodenal homeobox protein 1 (Pdx-1) maintains endoplasmic reticulum calcium levels through transcriptional regulation of sarco-endoplasmic reticulum calcium ATPase 2b (SERCA2b) in the islet β cell.

Johnson JS, Kono T, Tong X, Yamamoto WR, Zarain-Herzberg A, Merrins MJ, Satin LS, Gilon P, Evans-Molina C.

J Biol Chem. 2014 Nov 21;289(47):32798-810. doi: 10.1074/jbc.M114.575191. Epub 2014 Sep 30.

8.

ER-mitochondrial calcium flow underlies vulnerability of mechanosensory hair cells to damage.

Esterberg R, Hailey DW, Rubel EW, Raible DW.

J Neurosci. 2014 Jul 16;34(29):9703-19. doi: 10.1523/JNEUROSCI.0281-14.2014.

9.

Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice.

Bonnet Wersinger D, Benkafadar N, Jagodzinska J, Hamel C, Tanizawa Y, Lenaers G, Delettre C.

PLoS One. 2014 May 13;9(5):e97222. doi: 10.1371/journal.pone.0097222. eCollection 2014.

10.

Modulation of wolframin expression in human placenta during pregnancy: comparison among physiological and pathological states.

Lucariello A, Perna A, Sellitto C, Baldi A, Iannaccone A, Cobellis L, De Luca A, De Falco M.

Biomed Res Int. 2014;2014:985478. doi: 10.1155/2014/985478. Epub 2014 Jan 23.

11.

β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome.

Shang L, Hua H, Foo K, Martinez H, Watanabe K, Zimmer M, Kahler DJ, Freeby M, Chung W, LeDuc C, Goland R, Leibel RL, Egli D.

Diabetes. 2014 Mar;63(3):923-33. doi: 10.2337/db13-0717. Epub 2013 Nov 13.

12.

Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis.

Wiley SE, Andreyev AY, Divakaruni AS, Karisch R, Perkins G, Wall EA, van der Geer P, Chen YF, Tsai TF, Simon MI, Neel BG, Dixon JE, Murphy AN.

EMBO Mol Med. 2013 Jun;5(6):904-18. doi: 10.1002/emmm.201201429. Epub 2013 May 24.

13.

A WFS1 haplotype consisting of the minor alleles of rs752854, rs10010131, and rs734312 shows a protective role against type 2 diabetes in Russian patients.

Chistiakov DA, Khodyrev DS, Smetanina SA, Bel'chikova LN, Suplotova LA, Nosikov VV.

Rev Diabet Stud. 2010 Winter;7(4):285-92. doi: 10.1900/RDS.2010.7.285. Epub 2011 Feb 10.

14.

Endoplasmic-reticulum calcium depletion and disease.

Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L.

Cold Spring Harb Perspect Biol. 2011 Jun 1;3(6). pii: a004317. doi: 10.1101/cshperspect.a004317. Review.

15.

The neuro-ophthalmology of mitochondrial disease.

Fraser JA, Biousse V, Newman NJ.

Surv Ophthalmol. 2010 Jul-Aug;55(4):299-334. doi: 10.1016/j.survophthal.2009.10.002. Epub 2010 May 14. Review.

16.

Detailed investigation of the role of common and low-frequency WFS1 variants in type 2 diabetes risk.

Fawcett KA, Wheeler E, Morris AP, Ricketts SL, Hallmans G, Rolandsson O, Daly A, Wasson J, Permutt A, Hattersley AT, Glaser B, Franks PW, McCarthy MI, Wareham NJ, Sandhu MS, Barroso I.

Diabetes. 2010 Mar;59(3):741-6. doi: 10.2337/db09-0920. Epub 2009 Dec 22.

17.

Expression and localization of Wolfram syndrome 1 gene in the developing rat pancreas.

Xu R, Xia B, Geng J, Shi J, Shi H, Yuan L, De W.

World J Gastroenterol. 2009 Nov 21;15(43):5425-31.

18.

Expression of the diabetes risk gene wolframin (WFS1) in the human retina.

Schmidt-Kastner R, Kreczmanski P, Preising M, Diederen R, Schmitz C, Reis D, Blanks J, Dorey CK.

Exp Eye Res. 2009 Oct;89(4):568-74. doi: 10.1016/j.exer.2009.05.007. Epub 2009 Jun 12.

19.

Familial Wolfram syndrome due to compound heterozygosity for two novel WFS1 mutations.

Zenteno JC, Ruiz G, Pérez-Cano HJ, Camargo M.

Mol Vis. 2008 Jul 25;14:1353-7.

20.

A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2.

Amr S, Heisey C, Zhang M, Xia XJ, Shows KH, Ajlouni K, Pandya A, Satin LS, El-Shanti H, Shiang R.

Am J Hum Genet. 2007 Oct;81(4):673-83. Epub 2007 Aug 20.

Items per page

Supplemental Content

Write to the Help Desk