Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 57

Cited In for PubMed (Select 16805913)

1.

Discovery of A-893, A New Cell-Active Benzoxazinone Inhibitor of Lysine Methyltransferase SMYD2.

Sweis RF, Wang Z, Algire M, Arrowsmith CH, Brown PJ, Chiang GG, Guo J, Jakob CG, Kennedy S, Li F, Maag D, Shaw B, Soni NB, Vedadi M, Pappano WN.

ACS Med Chem Lett. 2015 Apr 29;6(6):695-700. doi: 10.1021/acsmedchemlett.5b00124. eCollection 2015 Jun 11.

PMID:
26101576
2.

Histone methylations in heart development, congenital and adult heart diseases.

Zhang QJ, Liu ZP.

Epigenomics. 2015 Apr;7(2):321-30. doi: 10.2217/epi.14.60.

PMID:
25942538
3.

Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN.

Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R.

Neoplasia. 2015 Apr;17(4):367-73. doi: 10.1016/j.neo.2015.03.002.

4.

LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2.

Nguyen H, Allali-Hassani A, Antonysamy S, Chang S, Chen LH, Curtis C, Emtage S, Fan L, Gheyi T, Li F, Liu S, Martin JR, Mendel D, Olsen JB, Pelletier L, Shatseva T, Wu S, Zhang FF, Arrowsmith CH, Brown PJ, Campbell RM, Garcia BA, Barsyte-Lovejoy D, Mader M, Vedadi M.

J Biol Chem. 2015 May 29;290(22):13641-53. doi: 10.1074/jbc.M114.626861. Epub 2015 Mar 30.

5.

The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) production.

Xu G, Liu G, Xiong S, Liu H, Chen X, Zheng B.

J Biol Chem. 2015 Feb 27;290(9):5414-23. doi: 10.1074/jbc.M114.610345. Epub 2015 Jan 12.

PMID:
25583990
6.

Structure and function of SET and MYND domain-containing proteins.

Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z.

Int J Mol Sci. 2015 Jan 8;16(1):1406-28. doi: 10.3390/ijms16011406.

7.

The selective activation of p53 target genes regulated by SMYD2 in BIX-01294 induced autophagy-related cell death.

Fan JD, Lei PJ, Zheng JY, Wang X, Li S, Liu H, He YL, Wang ZN, Wei G, Zhang X, Li LY, Wu M.

PLoS One. 2015 Jan 6;10(1):e0116782. doi: 10.1371/journal.pone.0116782. eCollection 2015.

8.

Selective inhibitors of protein methyltransferases.

Kaniskan HÜ, Konze KD, Jin J.

J Med Chem. 2015 Feb 26;58(4):1596-629. doi: 10.1021/jm501234a. Epub 2014 Dec 2.

PMID:
25406853
9.

Overexpression of SMYD2 contributes to malignant outcome in gastric cancer.

Komatsu S, Ichikawa D, Hirajima S, Nagata H, Nishimura Y, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Tsuda H, Imoto I, Inazawa J, Otsuji E.

Br J Cancer. 2015 Jan 20;112(2):357-64. doi: 10.1038/bjc.2014.543. Epub 2014 Oct 16.

PMID:
25321194
10.

Lysine methyltransferase Smyd2 suppresses p53-dependent cardiomyocyte apoptosis.

Sajjad A, Novoyatleva T, Vergarajauregui S, Troidl C, Schermuly RT, Tucker HO, Engel FB.

Biochim Biophys Acta. 2014 Nov;1843(11):2556-62. doi: 10.1016/j.bbamcr.2014.06.019. Epub 2014 Jul 8.

PMID:
25014164
11.

SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer.

Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D, Tummino PJ, Kruger RG, Garcia BA, Butte AJ, Vermeulen M, Sage J, Gozani O.

Nature. 2014 Jun 12;510(7504):283-7. doi: 10.1038/nature13320. Epub 2014 May 21.

12.

The histone methyltransferase SMYD2 methylates PARP1 and promotes poly(ADP-ribosyl)ation activity in cancer cells.

Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y, Hamamoto R.

Neoplasia. 2014 Mar;16(3):257-64, 264.e2. doi: 10.1016/j.neo.2014.03.002. Epub 2014 Apr 13.

13.

SET/MYND Lysine Methyltransferases Regulate Gene Transcription and Protein Activity.

Leinhart K, Brown M.

Genes (Basel). 2011 Feb 21;2(1):210-8. doi: 10.3390/genes2010210.

14.

Lysine-specific modifications of p53: a matter of life and death?

Marouco D, Garabadgiu AV, Melino G, Barlev NA.

Oncotarget. 2013 Oct;4(10):1556-71. Review.

15.
16.

Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects.

Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS, Weiser M, Ho TH, Kuan PF, Jonasch E, Furey TS, Prins JF, Lieb JD, Rathmell WK, Davis IJ.

Genome Res. 2014 Feb;24(2):241-50. doi: 10.1101/gr.158253.113. Epub 2013 Oct 24.

17.

Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation.

Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, Yang Z, Barton MC, Wen H, Shi X.

Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17284-9. doi: 10.1073/pnas.1307959110. Epub 2013 Oct 7.

18.

Smyd1b is required for skeletal and cardiac muscle function in zebrafish.

Li H, Zhong Y, Wang Z, Gao J, Xu J, Chu W, Zhang J, Fang S, Du SJ.

Mol Biol Cell. 2013 Nov;24(22):3511-21. doi: 10.1091/mbc.E13-06-0352. Epub 2013 Sep 25.

19.

The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy.

Proserpio V, Fittipaldi R, Ryall JG, Sartorelli V, Caretti G.

Genes Dev. 2013 Jun 1;27(11):1299-312. doi: 10.1101/gad.217240.113.

20.

Histone lysine-specific methyltransferases and demethylases in carcinogenesis: new targets for cancer therapy and prevention.

Tian X, Zhang S, Liu HM, Zhang YB, Blair CA, Mercola D, Sassone-Corsi P, Zi X.

Curr Cancer Drug Targets. 2013 Jun;13(5):558-79. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk