Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

G2385R and I2020T Mutations Increase LRRK2 GTPase Activity.

Ho DH, Jang J, Joe EH, Son I, Seo H, Seol W.

Biomed Res Int. 2016;2016:7917128. doi: 10.1155/2016/7917128. Epub 2016 May 25.

2.

SUR1 Receptor Interaction with Hesperidin and Linarin Predicts Possible Mechanisms of Action of Valeriana officinalis in Parkinson.

Santos G, Giraldez-Alvarez LD, Ávila-Rodriguez M, Capani F, Galembeck E, Neto AG, Barreto GE, Andrade B.

Front Aging Neurosci. 2016 May 2;8:97. doi: 10.3389/fnagi.2016.00097. eCollection 2016.

3.

A Protein Domain and Family Based Approach to Rare Variant Association Analysis.

Richardson TG, Shihab HA, Rivas MA, McCarthy MI, Campbell C, Timpson NJ, Gaunt TR.

PLoS One. 2016 Apr 29;11(4):e0153803. doi: 10.1371/journal.pone.0153803. eCollection 2016.

4.

Regulation of LRRK2 promoter activity and gene expression by Sp1.

Wang J, Song W.

Mol Brain. 2016 Mar 22;9:33. doi: 10.1186/s13041-016-0215-5.

5.

Evaluation of Models of Parkinson's Disease.

Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S.

Front Neurosci. 2016 Jan 19;9:503. doi: 10.3389/fnins.2015.00503. eCollection 2015. Review.

6.

Association between Parkinson's disease and G2019S and R1441C mutations of the LRRK2 gene.

Li XX, Liao Q, Xia H, Yang XL.

Exp Ther Med. 2015 Oct;10(4):1450-1454. Epub 2015 Jul 27.

7.

LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase.

Choi I, Kim B, Byun JW, Baik SH, Huh YH, Kim JH, Mook-Jung I, Song WK, Shin JH, Seo H, Suh YH, Jou I, Park SM, Kang HC, Joe EH.

Nat Commun. 2015 Sep 14;6:8255. doi: 10.1038/ncomms9255.

8.

Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases.

Fernández-Moriano C, González-Burgos E, Gómez-Serranillos MP.

Oxid Med Cell Longev. 2015;2015:408927. doi: 10.1155/2015/408927. Epub 2015 Apr 29. Review.

9.

The Role of α-Synuclein and LRRK2 in Tau Phosphorylation.

Kawakami F, Ichikawa T.

Parkinsons Dis. 2015;2015:734746. doi: 10.1155/2015/734746. Epub 2015 Apr 21. Review.

10.

No dopamine cell loss or changes in cytoskeleton function in transgenic mice expressing physiological levels of wild type or G2019S mutant LRRK2 and in human fibroblasts.

Garcia-Miralles M, Coomaraswamy J, Häbig K, Herzig MC, Funk N, Gillardon F, Maisel M, Jucker M, Gasser T, Galter D, Biskup S.

PLoS One. 2015 Apr 1;10(4):e0118947. doi: 10.1371/journal.pone.0118947. eCollection 2015.

11.

Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7.

Chia R, Haddock S, Beilina A, Rudenko IN, Mamais A, Kaganovich A, Li Y, Kumaran R, Nalls MA, Cookson MR.

Nat Commun. 2014 Dec 15;5:5827. doi: 10.1038/ncomms6827.

12.

The role of the LRRK2 gene in Parkinsonism.

Li JQ, Tan L, Yu JT.

Mol Neurodegener. 2014 Nov 12;9:47. doi: 10.1186/1750-1326-9-47. Review.

13.

LRRK2 R1441G mice are more liable to dopamine depletion and locomotor inactivity.

Liu HF, Lu S, Ho PW, Tse HM, Pang SY, Kung MH, Ho JW, Ramsden DB, Zhou ZJ, Ho SL.

Ann Clin Transl Neurol. 2014 Mar;1(3):199-208. doi: 10.1002/acn3.45. Epub 2014 Mar 4.

14.

Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging.

Longo F, Russo I, Shimshek DR, Greggio E, Morari M.

Neurobiol Dis. 2014 Nov;71:62-73. doi: 10.1016/j.nbd.2014.07.013. Epub 2014 Aug 6.

15.

Heterogeneity of leucine-rich repeat kinase 2 mutations: genetics, mechanisms and therapeutic implications.

Rudenko IN, Cookson MR.

Neurotherapeutics. 2014 Oct;11(4):738-50. doi: 10.1007/s13311-014-0284-z. Review.

16.

Arsenite stress down-regulates phosphorylation and 14-3-3 binding of leucine-rich repeat kinase 2 (LRRK2), promoting self-association and cellular redistribution.

Mamais A, Chia R, Beilina A, Hauser DN, Hall C, Lewis PA, Cookson MR, Bandopadhyay R.

J Biol Chem. 2014 Aug 1;289(31):21386-400. doi: 10.1074/jbc.M113.528463. Epub 2014 Jun 18.

17.

In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2.

Vancraenenbroeck R, De Raeymaecker J, Lobbestael E, Gao F, De Maeyer M, Voet A, Baekelandt V, Taymans JM.

Front Mol Neurosci. 2014 Jun 3;7:51. doi: 10.3389/fnmol.2014.00051. eCollection 2014.

18.

Discovery of a Highly Selective, Brain-Penetrant Aminopyrazole LRRK2 Inhibitor.

Chan BK, Estrada AA, Chen H, Atherall J, Baker-Glenn C, Beresford A, Burdick DJ, Chambers M, Dominguez SL, Drummond J, Gill A, Kleinheinz T, Le Pichon CE, Medhurst AD, Liu X, Moffat JG, Nash K, Scearce-Levie K, Sheng Z, Shore DG, Van de Poël H, Zhang S, Zhu H, Sweeney ZK.

ACS Med Chem Lett. 2012 Nov 23;4(1):85-90. doi: 10.1021/ml3003007. eCollection 2013 Jan 10.

19.

Leucine-rich repeat kinase 2-linked Parkinson's disease: clinical and molecular findings.

Kumari U, Tan EK.

J Mov Disord. 2010 Oct;3(2):25-31. doi: 10.14802/jmd.10008. Epub 2010 Oct 30. Review.

20.

Parkinson disease-associated mutation R1441H in LRRK2 prolongs the "active state" of its GTPase domain.

Liao J, Wu CX, Burlak C, Zhang S, Sahm H, Wang M, Zhang ZY, Vogel KW, Federici M, Riddle SM, Nichols RJ, Liu D, Cookson MR, Stone TA, Hoang QQ.

Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4055-60. doi: 10.1073/pnas.1323285111. Epub 2014 Mar 3.

Items per page

Supplemental Content

Write to the Help Desk