Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 33

1.

Loss of Aβ43 Production Caused by Presenilin-1 Mutations in the Knockin Mouse Brain.

Xia D, Kelleher RJ 3rd, Shen J.

Neuron. 2016 Apr 20;90(2):417-22. doi: 10.1016/j.neuron.2016.03.009.

PMID:
27100200
2.

Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease.

Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H.

J Neurosci. 2016 Jan 13;36(2):577-89. doi: 10.1523/JNEUROSCI.2117-15.2016.

3.

Qualitative changes in human γ-secretase underlie familial Alzheimer's disease.

Szaruga M, Veugelen S, Benurwar M, Lismont S, Sepulveda-Falla D, Lleo A, Ryan NS, Lashley T, Fox NC, Murayama S, Gijsen H, De Strooper B, Chávez-Gutiérrez L.

J Exp Med. 2015 Nov 16;212(12):2003-13. doi: 10.1084/jem.20150892. Epub 2015 Oct 19.

4.

Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator.

Jung JI, Price AR, Ladd TB, Ran Y, Park HJ, Ceballos-Diaz C, Smithson LA, Hochhaus G, Tang Y, Akula R, Ba S, Koo EH, Shapiro G, Felsenstein KM, Golde TE.

Mol Neurodegener. 2015 Jul 14;10:29. doi: 10.1186/s13024-015-0021-z.

5.

Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow.

Li H, Guo Q, Inoue T, Polito VA, Tabuchi K, Hammer RE, Pautler RG, Taffet GE, Zheng H.

Mol Neurodegener. 2014 Aug 9;9:28. doi: 10.1186/1750-1326-9-28.

6.

Complex relationships between substrate sequence and sensitivity to alterations in γ-secretase processivity induced by γ-secretase modulators.

Jung JI, Ran Y, Cruz PE, Rosario AM, Ladd TB, Kukar TL, Koo EH, Felsenstein KM, Golde TE.

Biochemistry. 2014 Apr 1;53(12):1947-57. doi: 10.1021/bi401521t. Epub 2014 Mar 20.

7.

Synergistic interactions between Alzheimer's Aβ40 and Aβ42 on the surface of primary neurons revealed by single molecule microscopy.

Chang CC, Althaus JC, Carruthers CJ, Sutton MA, Steel DG, Gafni A.

PLoS One. 2013 Dec 2;8(12):e82139. doi: 10.1371/journal.pone.0082139. eCollection 2013.

8.

Modeling Alzheimer's disease in mouse without mutant protein overexpression: cooperative and independent effects of Aβ and tau.

Guo Q, Li H, Cole AL, Hur JY, Li Y, Zheng H.

PLoS One. 2013 Nov 20;8(11):e80706. doi: 10.1371/journal.pone.0080706. eCollection 2013.

9.

Trans-dominant negative effects of pathogenic PSEN1 mutations on γ-secretase activity and Aβ production.

Heilig EA, Gutti U, Tai T, Shen J, Kelleher RJ 3rd.

J Neurosci. 2013 Jul 10;33(28):11606-17. doi: 10.1523/JNEUROSCI.0954-13.2013.

10.

γ-Secretase inhibitors and modulators.

Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L.

Biochim Biophys Acta. 2013 Dec;1828(12):2898-907. doi: 10.1016/j.bbamem.2013.06.005. Epub 2013 Jun 17. Review.

11.

Steroids as γ-secretase modulators.

Jung JI, Ladd TB, Kukar T, Price AR, Moore BD, Koo EH, Golde TE, Felsenstein KM.

FASEB J. 2013 Sep;27(9):3775-85. doi: 10.1096/fj.12-225649. Epub 2013 May 28.

12.

Development and mechanism of γ-secretase modulators for Alzheimer's disease.

Crump CJ, Johnson DS, Li YM.

Biochemistry. 2013 May 14;52(19):3197-216. doi: 10.1021/bi400377p. Epub 2013 May 2. Review.

13.

Generation of a novel murine model of Aβ deposition based on the expression of human wild-type amyloid precursor protein gene.

Vidal R, Ghetti B.

Prion. 2012 Sep-Oct;6(4):346-9. doi: 10.4161/pri.21023. Epub 2012 Aug 9.

14.

Chemical Biology, Molecular Mechanism and Clinical Perspective of γ-Secretase Modulators in Alzheimer's Disease.

Bulic B, Ness J, Hahn S, Rennhack A, Jumpertz T, Weggen S.

Curr Neuropharmacol. 2011 Dec;9(4):598-622. doi: 10.2174/157015911798376352.

15.

The mechanism of γ-Secretase dysfunction in familial Alzheimer disease.

Chávez-Gutiérrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, Lismont S, Zhou L, Van Cleynenbreugel S, Esselmann H, Wiltfang J, Serneels L, Karran E, Gijsen H, Schymkowitz J, Rousseau F, Broersen K, De Strooper B.

EMBO J. 2012 May 16;31(10):2261-74. doi: 10.1038/emboj.2012.79. Epub 2012 Apr 13.

16.

Familial frontotemporal dementia-associated presenilin-1 c.548G>T mutation causes decreased mRNA expression and reduced presenilin function in knock-in mice.

Watanabe H, Xia D, Kanekiyo T, Kelleher RJ 3rd, Shen J.

J Neurosci. 2012 Apr 11;32(15):5085-96. doi: 10.1523/JNEUROSCI.0317-12.2012.

17.
18.

Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of γ-secretase.

Chau DM, Crump CJ, Villa JC, Scheinberg DA, Li YM.

J Biol Chem. 2012 May 18;287(21):17288-96. doi: 10.1074/jbc.M111.300483. Epub 2012 Mar 29.

19.

Structural basis for increased toxicity of pathological aβ42:aβ40 ratios in Alzheimer disease.

Pauwels K, Williams TL, Morris KL, Jonckheere W, Vandersteen A, Kelly G, Schymkowitz J, Rousseau F, Pastore A, Serpell LC, Broersen K.

J Biol Chem. 2012 Feb 17;287(8):5650-60. doi: 10.1074/jbc.M111.264473. Epub 2011 Dec 8.

20.

Interaction between amyloid precursor protein and Nogo receptors regulates amyloid deposition.

Zhou X, Hu X, He W, Tang X, Shi Q, Zhang Z, Yan R.

FASEB J. 2011 Sep;25(9):3146-56. doi: 10.1096/fj.11-184325. Epub 2011 Jun 13.

Items per page

Supplemental Content

Write to the Help Desk