Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 34

1.

Enzyme-specific differences in mannose phosphorylation between GlcNAc-1-phosphotransferase αβ and γ subunit deficient zebrafish support cathepsin proteases as early mediators of mucolipidosis pathology.

Flanagan-Steet H, Matheny C, Petrey A, Parker J, Steet R.

Biochim Biophys Acta. 2016 Sep;1860(9):1845-53. doi: 10.1016/j.bbagen.2016.05.029. Epub 2016 May 27.

PMID:
27241848
2.

Mucolipidosis III GNPTG Missense Mutations Cause Misfolding of the γ Subunit of GlcNAc-1-Phosphotransferase.

van Meel E, Kornfeld S.

Hum Mutat. 2016 Jul;37(7):623-6. doi: 10.1002/humu.22993. Epub 2016 Apr 22.

PMID:
27038293
3.

Multiple Domains of GlcNAc-1-phosphotransferase Mediate Recognition of Lysosomal Enzymes.

van Meel E, Lee WS, Liu L, Qian Y, Doray B, Kornfeld S.

J Biol Chem. 2016 Apr 8;291(15):8295-307. doi: 10.1074/jbc.M116.714568. Epub 2016 Feb 1.

PMID:
26833567
4.

Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting.

Flanagan-Steet H, Aarnio M, Kwan B, Guihard P, Petrey A, Haskins M, Blanchard F, Steet R.

J Bone Miner Res. 2016 Mar;31(3):535-48. doi: 10.1002/jbmr.2722. Epub 2015 Oct 13.

5.

Site-1 protease-activated formation of lysosomal targeting motifs is independent of the lipogenic transcription control.

Klünder S, Heeren J, Markmann S, Santer R, Braulke T, Pohl S.

J Lipid Res. 2015 Aug;56(8):1625-32. doi: 10.1194/jlr.M060756. Epub 2015 Jun 24.

7.

Bacterial expression of the phosphodiester-binding site of the cation-independent mannose 6-phosphate receptor for crystallographic and NMR studies.

Olson LJ, Jensen DR, Volkman BF, Kim JJ, Peterson FC, Gundry RL, Dahms NM.

Protein Expr Purif. 2015 Jul;111:91-7. doi: 10.1016/j.pep.2015.04.002. Epub 2015 Apr 8.

8.

Analyses of disease-related GNPTAB mutations define a novel GlcNAc-1-phosphotransferase interaction domain and an alternative site-1 protease cleavage site.

Velho RV, De Pace R, Klünder S, Sperb-Ludwig F, Lourenço CM, Schwartz IV, Braulke T, Pohl S.

Hum Mol Genet. 2015 Jun 15;24(12):3497-505. doi: 10.1093/hmg/ddv100. Epub 2015 Mar 18.

9.

Glucosidase II and MRH-domain containing proteins in the secretory pathway.

D'Alessio C, Dahms NM.

Curr Protein Pept Sci. 2015;16(1):31-48. Review.

10.

Mannose 6 phosphorylation of lysosomal enzymes controls B cell functions.

Otomo T, Schweizer M, Kollmann K, Schumacher V, Muschol N, Tolosa E, Mittrücker HW, Braulke T.

J Cell Biol. 2015 Jan 19;208(2):171-80. doi: 10.1083/jcb.201407077.

11.

Identification of a fourth mannose 6-phosphate binding site in the cation-independent mannose 6-phosphate receptor.

Olson LJ, Castonguay AC, Lasanajak Y, Peterson FC, Cummings RD, Smith DF, Dahms NM.

Glycobiology. 2015 Jun;25(6):591-606. doi: 10.1093/glycob/cwv001. Epub 2015 Jan 8.

12.

Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition.

Qian Y, van Meel E, Flanagan-Steet H, Yox A, Steet R, Kornfeld S.

J Biol Chem. 2015 Jan 30;290(5):3045-56. doi: 10.1074/jbc.M114.612507. Epub 2014 Dec 11.

13.

A novel mouse model of a patient mucolipidosis II mutation recapitulates disease pathology.

Paton L, Bitoun E, Kenyon J, Priestman DA, Oliver PL, Edwards B, Platt FM, Davies KE.

J Biol Chem. 2014 Sep 26;289(39):26709-21. doi: 10.1074/jbc.M114.586156. Epub 2014 Aug 8.

14.

Mislocalization of phosphotransferase as a cause of mucolipidosis III αβ.

van Meel E, Qian Y, Kornfeld SA.

Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3532-7. doi: 10.1073/pnas.1401417111. Epub 2014 Feb 18.

15.

Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II.

Kollmann K, Pestka JM, Kühn SC, Schöne E, Schweizer M, Karkmann K, Otomo T, Catala-Lehnen P, Failla AV, Marshall RP, Krause M, Santer R, Amling M, Braulke T, Schinke T.

EMBO Mol Med. 2013 Dec;5(12):1871-86. doi: 10.1002/emmm.201302979. Epub 2013 Oct 15.

16.

Elevated Bone Turnover in an Infantile Patient with Mucolipidosis II; No Association with Hyperparathyroidism.

Otomo T, Yamamoto T, Fujikawa Y, Shimotsuji T, Ozono K.

Clin Pediatr Endocrinol. 2011 Jan;20(1):7-12. doi: 10.1297/cpe.20.7. Epub 2011 Mar 26.

17.

Characterization and downstream mannose phosphorylation of human recombinant α-L-iduronidase produced in Arabidopsis complex glycan-deficient (cgl) seeds.

He X, Pierce O, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Gloster TM, Vocadlo DJ, Qian Y, Brooks D, Kermode AR.

Plant Biotechnol J. 2013 Dec;11(9):1034-43. doi: 10.1111/pbi.12096. Epub 2013 Jul 31.

18.

The DMAP interaction domain of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a substrate recognition module.

Qian Y, Flanagan-Steet H, van Meel E, Steet R, Kornfeld SA.

Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10246-51. doi: 10.1073/pnas.1308453110. Epub 2013 Jun 3.

19.

Transport of the GlcNAc-1-phosphotransferase α/β-subunit precursor protein to the Golgi apparatus requires a combinatorial sorting motif.

Franke M, Braulke T, Storch S.

J Biol Chem. 2013 Jan 11;288(2):1238-49. doi: 10.1074/jbc.M112.407676. Epub 2012 Nov 28.

20.

Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice.

Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Röchert AK, Pohl S, Lübke T, Michalski JC, Käkelä R, Walkley SU, Braulke T.

Brain. 2012 Sep;135(Pt 9):2661-75. doi: 10.1093/brain/aws209.

Items per page

Supplemental Content

Write to the Help Desk