Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 33

1.

Coeliac Disease - New Pathophysiological Findings and Their Implications for Therapy.

Stein J, Schuppan D.

Viszeralmedizin. 2014 Jun;30(3):156-65. doi: 10.1159/000365099. Review.

2.

Humoral immunity links Candida albicans infection and celiac disease.

Corouge M, Loridant S, Fradin C, Salleron J, Damiens S, Moragues MD, Souplet V, Jouault T, Robert R, Dubucquoi S, Sendid B, Colombel JF, Poulain D.

PLoS One. 2015 Mar 20;10(3):e0121776. doi: 10.1371/journal.pone.0121776. eCollection 2015.

3.

Regulation of immune responses by the neonatal fc receptor and its therapeutic implications.

Rath T, Baker K, Pyzik M, Blumberg RS.

Front Immunol. 2015 Jan 5;5:664. doi: 10.3389/fimmu.2014.00664. eCollection 2014. Review.

4.

Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires.

Bergseng E, Dørum S, Arntzen MØ, Nielsen M, Nygård S, Buus S, de Souza GA, Sollid LM.

Immunogenetics. 2015 Feb;67(2):73-84. doi: 10.1007/s00251-014-0819-9. Epub 2014 Dec 12.

5.

Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance.

Samsel A, Seneff S.

Interdiscip Toxicol. 2013 Dec;6(4):159-84. doi: 10.2478/intox-2013-0026. Review.

6.

On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes.

Busch R, De Riva A, Hadjinicolaou AV, Jiang W, Hou T, Mellins ED.

Expert Rev Mol Med. 2012 Jul 6;14:e15. doi: 10.1017/erm.2012.9. Review.

7.

Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation.

Salentijn EM, Mitea DC, Goryunova SV, van der Meer IM, Padioleau I, Gilissen LJ, Koning F, Smulders MJ.

BMC Genomics. 2012 Jun 22;13:277. doi: 10.1186/1471-2164-13-277.

8.

Nitration of the pollen allergen bet v 1.0101 enhances the presentation of bet v 1-derived peptides by HLA-DR on human dendritic cells.

Karle AC, Oostingh GJ, Mutschlechner S, Ferreira F, Lackner P, Bohle B, Fischer GF, Vogt AB, Duschl A.

PLoS One. 2012;7(2):e31483. doi: 10.1371/journal.pone.0031483. Epub 2012 Feb 14.

9.

Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules.

Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F.

Immunogenetics. 2012 Jun;64(6):455-60. doi: 10.1007/s00251-012-0599-z. Epub 2012 Feb 10. Review.

10.

Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders.

Sollid LM, Jabri B.

Curr Opin Immunol. 2011 Dec;23(6):732-8. doi: 10.1016/j.coi.2011.08.006. Epub 2011 Sep 12. Review.

11.

Celiac disease and immigration in Northeastern Italy: the "drawn double nostalgia" of "cozonac" and "panettone" slices.

Parco S, Città A, Vascotto F, Tamaro G.

Clin Exp Gastroenterol. 2011;4:121-5. doi: 10.2147/CEG.S19225. Epub 2011 May 15.

12.

A universal approach to eliminate antigenic properties of alpha-gliadin peptides in celiac disease.

Mitea C, Salentijn EM, van Veelen P, Goryunova SV, van der Meer IM, van den Broeck HC, Mujico JR, Montserrat V, Gilissen LJ, Drijfhout JW, Dekking L, Koning F, Smulders MJ.

PLoS One. 2010 Dec 16;5(12):e15637. doi: 10.1371/journal.pone.0015637. Erratum in: PLoS One. 2012;7(9). doi:10.1371/annotation/cdf9d655-07e8-4081-ad86-a00c89fa001a. Monserrat, Veronica [corrected to Montserrat, Veronica].

13.

The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are Peptide fragments harboring celiac disease T-cell epitopes.

Dørum S, Arntzen MØ, Qiao SW, Holm A, Koehler CJ, Thiede B, Sollid LM, Fleckenstein B.

PLoS One. 2010 Nov 19;5(11):e14056. doi: 10.1371/journal.pone.0014056.

14.

Single-chain recombinant HLA-DQ2.5/peptide molecules block α2-gliadin-specific pathogenic CD4+ T-cell proliferation and attenuate production of inflammatory cytokines: a potential therapy for celiac disease.

Huan J, Meza-Romero R, Mooney JL, Vandenbark AA, Offner H, Burrows GG.

Mucosal Immunol. 2011 Jan;4(1):112-20. doi: 10.1038/mi.2010.44. Epub 2010 Aug 25.

15.

Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease.

van den Broeck HC, de Jong HC, Salentijn EM, Dekking L, Bosch D, Hamer RJ, Gilissen LJ, van der Meer IM, Smulders MJ.

Theor Appl Genet. 2010 Nov;121(8):1527-39. doi: 10.1007/s00122-010-1408-4. Epub 2010 Jul 28.

16.

A distinctive 'microbial signature' in celiac pediatric patients.

Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, Longhi C, Maiella G, Cucchiara S, Conte MP.

BMC Microbiol. 2010 Jun 17;10:175. doi: 10.1186/1471-2180-10-175.

17.
19.

Noninflammatory gluten peptide analogs as biomarkers for celiac sprue.

Bethune MT, Crespo-Bosque M, Bergseng E, Mazumdar K, Doyle L, Sestak K, Sollid LM, Khosla C.

Chem Biol. 2009 Aug 28;16(8):868-81. doi: 10.1016/j.chembiol.2009.07.009.

20.

Antigen presentation in celiac disease.

Qiao SW, Sollid LM, Blumberg RS.

Curr Opin Immunol. 2009 Feb;21(1):111-7. doi: 10.1016/j.coi.2009.03.004. Epub 2009 Apr 1. Review.

Items per page

Supplemental Content

Write to the Help Desk