Format
Items per page
Sort by

Send to:

Choose Destination

Results: 15

Cited In for PubMed (Select 15494237)

1.

Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath.

Wilson AD.

Metabolites. 2015 Mar 2;5(1):140-63. doi: 10.3390/metabo5010140. Review.

2.

A pilot study exploring the use of breath analysis to differentiate healthy cattle from cattle experimentally infected with Mycobacterium bovis.

Ellis CK, Stahl RS, Nol P, Waters WR, Palmer MV, Rhyan JC, VerCauteren KC, McCollum M, Salman MD.

PLoS One. 2014 Feb 24;9(2):e89280. doi: 10.1371/journal.pone.0089280. eCollection 2014.

3.

Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

Trefz P, Koehler H, Klepik K, Moebius P, Reinhold P, Schubert JK, Miekisch W.

PLoS One. 2013 Oct 8;8(10):e76868. doi: 10.1371/journal.pone.0076868. eCollection 2013.

4.

Clinical application of volatile organic compound analysis for detecting infectious diseases.

Sethi S, Nanda R, Chakraborty T.

Clin Microbiol Rev. 2013 Jul;26(3):462-75. doi: 10.1128/CMR.00020-13. Review.

5.

Application of the electronic nose technique to differentiation between model mixtures with COPD markers.

Dymerski T, Gębicki J, Wiśniewska P, Sliwińska M, Wardencki W, Namieśnik J.

Sensors (Basel). 2013 Apr 15;13(4):5008-27. doi: 10.3390/s130405008.

6.

Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints.

Zhu J, Bean HD, Wargo MJ, Leclair LW, Hill JE.

J Breath Res. 2013 Mar;7(1):016003. doi: 10.1088/1752-7155/7/1/016003. Epub 2013 Jan 10.

7.

Detection of Aeromonas hydrophila in liquid media by volatile production similarity patterns, using a FF-2A electronic nose.

Fujioka K, Arakawa E, Kita J, Aoyama Y, Manome Y, Ikeda K, Yamamoto K.

Sensors (Basel). 2013 Jan 7;13(1):736-45. doi: 10.3390/s130100736.

8.

The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria.

Nawrath T, Mgode GF, Weetjens B, Kaufmann SH, Schulz S.

Beilstein J Org Chem. 2012;8:290-9. doi: 10.3762/bjoc.8.31. Epub 2012 Feb 22.

9.

Applications and advances in electronic-nose technologies.

Wilson AD, Baietto M.

Sensors (Basel). 2009;9(7):5099-148. doi: 10.3390/s90705099. Epub 2009 Jun 29.

10.

Advances in electronic-nose technologies developed for biomedical applications.

Wilson AD, Baietto M.

Sensors (Basel). 2011;11(1):1105-76. doi: 10.3390/s110101105. Epub 2011 Jan 19. Review.

11.

Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities.

Parsons LM, Somoskövi A, Gutierrez C, Lee E, Paramasivan CN, Abimiku A, Spector S, Roscigno G, Nkengasong J.

Clin Microbiol Rev. 2011 Apr;24(2):314-50. doi: 10.1128/CMR.00059-10. Review.

12.

Biosensing technologies for Mycobacterium tuberculosis detection: status and new developments.

Zhou L, He X, He D, Wang K, Qin D.

Clin Dev Immunol. 2011;2011:193963. doi: 10.1155/2011/193963. Epub 2011 Mar 16. Review.

13.

Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum.

Fend R, Kolk AH, Bessant C, Buijtels P, Klatser PR, Woodman AC.

J Clin Microbiol. 2006 Jun;44(6):2039-45.

14.

Current and developing technologies for monitoring agents of bioterrorism and biowarfare.

Lim DV, Simpson JM, Kearns EA, Kramer MF.

Clin Microbiol Rev. 2005 Oct;18(4):583-607. Review.

15.

Use of an electronic nose to diagnose Mycobacterium bovis infection in badgers and cattle.

Fend R, Geddes R, Lesellier S, Vordermeier HM, Corner LA, Gormley E, Costello E, Hewinson RG, Marlin DJ, Woodman AC, Chambers MA.

J Clin Microbiol. 2005 Apr;43(4):1745-51.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk