Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis.

Pamenter ME, Powell FL.

Compr Physiol. 2016 Jun 13;6(3):1345-85. doi: 10.1002/cphy.c150026.

2.

Effect of Housing Types on Growth, Feeding, Physical Activity, and Anxiety-Like Behavior in Male Sprague-Dawley Rats.

Teske JA, Perez-Leighton CE, Noble EE, Wang C, Billington CJ, Kotz CM.

Front Nutr. 2016 Feb 4;3:4. doi: 10.3389/fnut.2016.00004. eCollection 2016.

3.

Quantitative assessment of integrated phrenic nerve activity.

Nichols NL, Mitchell GS.

Respir Physiol Neurobiol. 2016 Jun;226:81-6. doi: 10.1016/j.resp.2015.12.005. Epub 2015 Dec 24.

PMID:
26724605
4.

Power spectral analysis of hypoglossal nerve activity during intermittent hypoxia-induced long-term facilitation in mice.

ElMallah MK, Stanley DA, Lee KZ, Turner SM, Streeter KA, Baekey DM, Fuller DD.

J Neurophysiol. 2016 Mar;115(3):1372-80. doi: 10.1152/jn.00479.2015. Epub 2015 Dec 16.

PMID:
26683067
5.

TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury.

Martínez-Gálvez G, Zambrano JM, Diaz Soto JC, Zhan WZ, Gransee HM, Sieck GC, Mantilla CB.

Exp Neurol. 2016 Feb;276:31-40. doi: 10.1016/j.expneurol.2015.11.007. Epub 2015 Dec 1.

PMID:
26607912
7.

Delivery of In Vivo Acute Intermittent Hypoxia in Neonatal Rodents to Prime Subventricular Zone-derived Neural Progenitor Cell Cultures.

Ross HH, Sandhu MS, Sharififar S, Fuller DD.

J Vis Exp. 2015 Nov 2;(105):e52527. doi: 10.3791/52527.

PMID:
26556530
8.

Activating Injury-Responsive Genes with Hypoxia Enhances Axon Regeneration through Neuronal HIF-1α.

Cho Y, Shin JE, Ewan EE, Oh YM, Pita-Thomas W, Cavalli V.

Neuron. 2015 Nov 18;88(4):720-34. doi: 10.1016/j.neuron.2015.09.050. Epub 2015 Oct 29.

PMID:
26526390
9.

Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.

Gill LC, Gransee HM, Sieck GC, Mantilla CB.

Respir Physiol Neurobiol. 2016 Jun;226:128-36. doi: 10.1016/j.resp.2015.10.009. Epub 2015 Oct 23.

PMID:
26506253
10.

Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.

Nichols NL, Satriotomo I, Harrigan DJ, Mitchell GS.

Exp Neurol. 2015 Nov;273:138-50. doi: 10.1016/j.expneurol.2015.08.011. Epub 2015 Aug 16. Erratum in: Exp Neurol. 2016 Apr;278:143.

PMID:
26287750
11.

Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

Fields DP, Springborn SR, Mitchell GS.

J Neurophysiol. 2015 Sep;114(3):2015-22. doi: 10.1152/jn.00374.2015. Epub 2015 Aug 12.

PMID:
26269554
12.

Mammalian target of rapamycin is required for phrenic long-term facilitation following severe but not moderate acute intermittent hypoxia.

Dougherty BJ, Fields DP, Mitchell GS.

J Neurophysiol. 2015 Sep;114(3):1784-91. doi: 10.1152/jn.00539.2015. Epub 2015 Jul 29.

PMID:
26224775
13.

Repetitive acute intermittent hypoxia does not promote generalized inflammatory gene expression in the rat CNS.

Peters ME, Kimyon RS, Mitchell GS, Watters JJ.

Respir Physiol Neurobiol. 2015 Nov;218:1-10. doi: 10.1016/j.resp.2015.07.008. Epub 2015 Jul 26.

PMID:
26213117
14.

Efficacy of Acute Intermittent Hypoxia on Physical Function and Health Status in Humans with Spinal Cord Injury: A Brief Review.

Astorino TA, Harness ET, White AC.

Neural Plast. 2015;2015:409625. doi: 10.1155/2015/409625. Epub 2015 Jun 8. Review.

15.

Phrenic long-term facilitation requires PKCθ activity within phrenic motor neurons.

Devinney MJ, Fields DP, Huxtable AG, Peterson TJ, Dale EA, Mitchell GS.

J Neurosci. 2015 May 27;35(21):8107-17. doi: 10.1523/JNEUROSCI.5086-14.2015.

16.

Intermittent hypoxia and neurorehabilitation.

Gonzalez-Rothi EJ, Lee KZ, Dale EA, Reier PJ, Mitchell GS, Fuller DD.

J Appl Physiol (1985). 2015 Dec 15;119(12):1455-65. doi: 10.1152/japplphysiol.00235.2015. Epub 2015 May 21. Review.

PMID:
25997947
17.

Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.

Huxtable AG, Smith SM, Peterson TJ, Watters JJ, Mitchell GS.

J Neurosci. 2015 Apr 29;35(17):6871-80. doi: 10.1523/JNEUROSCI.4539-14.2015.

18.

Remote limb ischemic conditioning enhances motor learning in healthy humans.

Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE.

J Neurophysiol. 2015 Jun 1;113(10):3708-19. doi: 10.1152/jn.01028.2014. Epub 2015 Apr 1.

19.

Neuromechanical principles underlying movement modularity and their implications for rehabilitation.

Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, Kesar TM.

Neuron. 2015 Apr 8;86(1):38-54. doi: 10.1016/j.neuron.2015.02.042. Review.

20.

Spinal metaplasticity in respiratory motor control.

Fields DP, Mitchell GS.

Front Neural Circuits. 2015 Feb 11;9:2. doi: 10.3389/fncir.2015.00002. eCollection 2015. Review.

Items per page

Supplemental Content

Write to the Help Desk