Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 43

Cited In for PubMed (Select 14566049)

1.

Contribution of two conserved histidines to the dual activity of archaeal RNA guide-dependent and -independent pseudouridine synthase Cbf5.

Tillault AS, Fourmann JB, Loegler C, Wieden HJ, Kothe U, Charpentier B.

RNA. 2015 Jul;21(7):1233-9. doi: 10.1261/rna.051425.115. Epub 2015 May 19.

PMID:
25990001
2.

Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases.

Byrne RT, Jenkins HT, Peters DT, Whelan F, Stowell J, Aziz N, Kasatsky P, Rodnina MV, Koonin EV, Konevega AL, Antson AA.

Proc Natl Acad Sci U S A. 2015 May 12;112(19):6033-7. doi: 10.1073/pnas.1500161112. Epub 2015 Apr 22.

PMID:
25902496
3.

Dye label interference with RNA modification reveals 5-fluorouridine as non-covalent inhibitor.

Spenkuch F, Hinze G, Kellner S, Kreutz C, Micura R, Basché T, Helm M.

Nucleic Acids Res. 2014 Nov 10;42(20):12735-45. doi: 10.1093/nar/gku908. Epub 2014 Oct 9.

4.

Absolute and relative quantification of RNA modifications via biosynthetic isotopomers.

Kellner S, Ochel A, Thüring K, Spenkuch F, Neumann J, Sharma S, Entian KD, Schneider D, Helm M.

Nucleic Acids Res. 2014 Oct;42(18):e142. doi: 10.1093/nar/gku733. Epub 2014 Aug 16.

5.

Steroid receptor RNA activator (SRA) modification by the human pseudouridine synthase 1 (hPus1p): RNA binding, activity, and atomic model.

Huet T, Miannay FA, Patton JR, Thore S.

PLoS One. 2014 Apr 10;9(4):e94610. doi: 10.1371/journal.pone.0094610. eCollection 2014.

6.

An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation.

Friedt J, Leavens FM, Mercier E, Wieden HJ, Kothe U.

Nucleic Acids Res. 2014 Apr;42(6):3857-70. doi: 10.1093/nar/gkt1331. Epub 2013 Dec 26.

7.

The mechanism of pseudouridine synthases from a covalent complex with RNA, and alternate specificity for U2605 versus U2604 between close homologs.

Czudnochowski N, Ashley GW, Santi DV, Alian A, Finer-Moore J, Stroud RM.

Nucleic Acids Res. 2014 Feb;42(3):2037-48. doi: 10.1093/nar/gkt1050. Epub 2013 Nov 7.

8.

Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate.

Shao Z, Yan W, Peng J, Zuo X, Zou Y, Li F, Gong D, Ma R, Wu J, Shi Y, Zhang Z, Teng M, Li X, Gong Q.

Nucleic Acids Res. 2014 Jan;42(1):509-25. doi: 10.1093/nar/gkt869. Epub 2013 Sep 29.

9.

Role of forefinger and thumb loops in production of Ψ54 and Ψ55 in tRNAs by archaeal Pus10.

Joardar A, Jana S, Fitzek E, Gurha P, Majumder M, Chatterjee K, Geisler M, Gupta R.

RNA. 2013 Sep;19(9):1279-94. doi: 10.1261/rna.039230.113. Epub 2013 Jul 29.

10.

Purification, crystallization and preliminary X-ray crystallographic study of the tRNA pseudouridine synthase TruB from Streptococcus pneumoniae.

Yang W, Zhao S, Jin L, Guo Z, Zhang S, Zhang H, Wang D.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jul;69(Pt 7):759-61. doi: 10.1107/S1744309113012487. Epub 2013 Jun 28.

11.
12.

Pseudouridine synthase 1: a site-specific synthase without strict sequence recognition requirements.

Sibert BS, Patton JR.

Nucleic Acids Res. 2012 Mar;40(5):2107-18. doi: 10.1093/nar/gkr1017. Epub 2011 Nov 18.

13.

Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis.

Wright JR, Keffer-Wilkes LC, Dobing SR, Kothe U.

RNA. 2011 Dec;17(12):2074-84. doi: 10.1261/rna.2905811. Epub 2011 Oct 13.

14.

Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis.

Hamdane D, Argentini M, Cornu D, Myllykallio H, Skouloubris S, Hui-Bon-Hoa G, Golinelli-Pimpaneau B.

J Biol Chem. 2011 Oct 21;286(42):36268-80. doi: 10.1074/jbc.M111.256966. Epub 2011 Aug 16.

15.

A multifunctional bioconjugate module for versatile photoaffinity labeling and click chemistry of RNA.

Kellner S, Seidu-Larry S, Burhenne J, Motorin Y, Helm M.

Nucleic Acids Res. 2011 Sep 1;39(16):7348-60. doi: 10.1093/nar/gkr449. Epub 2011 Jun 6.

16.

Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of an ASCH domain-containing protein from Zymomonas mobilis ZM4.

Park SY, Park JH, Kim JS.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Mar 1;67(Pt 3):310-2. doi: 10.1107/S1744309110053467. Epub 2011 Feb 18.

17.

Structural and functional evidence of high specificity of Cbf5 for ACA trinucleotide.

Zhou J, Liang B, Li H.

RNA. 2011 Feb;17(2):244-50. doi: 10.1261/rna.2415811. Epub 2010 Dec 13.

18.

Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus.

Ishida K, Kunibayashi T, Tomikawa C, Ochi A, Kanai T, Hirata A, Iwashita C, Hori H.

Nucleic Acids Res. 2011 Mar;39(6):2304-18. doi: 10.1093/nar/gkq1180. Epub 2010 Nov 18.

19.

Formation of a stalled early intermediate of pseudouridine synthesis monitored by real-time FRET.

Hengesbach M, Voigts-Hoffmann F, Hofmann B, Helm M.

RNA. 2010 Mar;16(3):610-20. doi: 10.1261/rna.1832510. Epub 2010 Jan 27.

20.

Dyskeratosis congenita, stem cells and telomeres.

Kirwan M, Dokal I.

Biochim Biophys Acta. 2009 Apr;1792(4):371-9. doi: 10.1016/j.bbadis.2009.01.010. Epub 2009 Feb 7. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk