Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 32

1.

Cerebellar ataxias: β-III spectrin's interactions suggest common pathogenic pathways.

Perkins E, Suminaite D, Jackson M.

J Physiol. 2016 Aug 15;594(16):4661-76. doi: 10.1113/JP271195. Epub 2016 Apr 24.

PMID:
26821241
2.

A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia.

Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G.

Am J Hum Genet. 2015 Nov 5;97(5):726-37. doi: 10.1016/j.ajhg.2015.09.007. Epub 2015 Oct 8.

4.
5.

Therapeutic prospects for spinocerebellar ataxia type 2 and 3.

Bezprozvanny I, Klockgether T.

Drugs Future. 2009 Dec;34(12). doi: 10.1358/dof.2009.034.12.1443434.

6.

Deregulation of the actin cytoskeleton and macropinocytosis in response to phorbol ester by the mutant protein kinase C gamma that causes spinocerebellar ataxia type 14.

Yamamoto K, Seki T, Yamamoto H, Adachi N, Tanaka S, Hide I, Saito N, Sakai N.

Front Physiol. 2014 Apr 1;5:126. doi: 10.3389/fphys.2014.00126. eCollection 2014.

7.

In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons.

Angliker N, Rüegg MA.

Bioarchitecture. 2013 Jul-Aug;3(4):113-8. doi: 10.4161/bioa.26497.

8.

Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice.

Yang S, Huang S, Gaertig MA, Li XJ, Li S.

Neuron. 2014 Jan 22;81(2):349-65. doi: 10.1016/j.neuron.2013.12.002.

9.

Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias.

Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I.

Cerebellum. 2014 Apr;13(2):269-302. doi: 10.1007/s12311-013-0539-y.

10.

Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model.

Németh AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, Shanks ME, Gregory L, Buck D, Zameel Cader M, Talbot K, de Silva R, Fletcher N, Hastings R, Jayawant S, Morrison PJ, Worth P, Taylor M, Tolmie J, O'Regan M; UK Ataxia Consortium, Valentine R, Packham E, Evans J, Seller A, Ragoussis J.

Brain. 2013 Oct;136(Pt 10):3106-18. doi: 10.1093/brain/awt236. Epub 2013 Sep 11.

11.

Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology.

Thomanetz V, Angliker N, Cloëtta D, Lustenberger RM, Schweighauser M, Oliveri F, Suzuki N, Rüegg MA.

J Cell Biol. 2013 Apr 15;201(2):293-308. doi: 10.1083/jcb.201205030. Epub 2013 Apr 8.

12.

Establishment of a novel fluorescence-based method to evaluate chaperone-mediated autophagy in a single neuron.

Seki T, Yoshino KI, Tanaka S, Dohi E, Onji T, Yamamoto K, Hide I, Paulson HL, Saito N, Sakai N.

PLoS One. 2012;7(2):e31232. doi: 10.1371/journal.pone.0031232. Epub 2012 Feb 7. Erratum in: PLoS One. 2014;9(9):e109006.

13.

Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics.

Whaley NR, Fujioka S, Wszolek ZK.

Orphanet J Rare Dis. 2011 May 28;6:33. doi: 10.1186/1750-1172-6-33. Review.

14.

Effect of trehalose on the properties of mutant {gamma}PKC, which causes spinocerebellar ataxia type 14, in neuronal cell lines and cultured Purkinje cells.

Seki T, Abe-Seki N, Kikawada T, Takahashi H, Yamamoto K, Adachi N, Tanaka S, Hide I, Saito N, Sakai N.

J Biol Chem. 2010 Oct 22;285(43):33252-64. doi: 10.1074/jbc.M110.146704. Epub 2010 Aug 12.

15.

Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling.

Schorge S, van de Leemput J, Singleton A, Houlden H, Hardy J.

Trends Neurosci. 2010 May;33(5):211-9. doi: 10.1016/j.tins.2010.02.005. Epub 2010 Mar 11.

16.

The spinocerebellar ataxias.

Paulson HL.

J Neuroophthalmol. 2009 Sep;29(3):227-37. doi: 10.1097/WNO0b013e3181b416de. Review.

17.

IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23.

Brkanac Z, Spencer D, Shendure J, Robertson PD, Matsushita M, Vu T, Bird TD, Olson MV, Raskind WH.

Am J Hum Genet. 2009 May;84(5):692-7. doi: 10.1016/j.ajhg.2009.04.008. Epub 2009 Apr 30.

18.

PKCgamma-induced trafficking of AMPA receptors in embryonic zebrafish depends on NSF and PICK1.

Patten SA, Ali DW.

Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6796-801. doi: 10.1073/pnas.0811171106. Epub 2009 Apr 6.

19.

Loss of protein kinase Cgamma in knockout mice and increased retinal sensitivity to hyperbaric oxygen.

Yevseyenkov VV, Das S, Lin D, Willard L, Davidson H, Sitaramayya A, Giblin FJ, Dang L, Takemoto DJ.

Arch Ophthalmol. 2009 Apr;127(4):500-6. doi: 10.1001/archophthalmol.2009.31.

20.

Loss of Purkinje cells in the PKCgamma H101Y transgenic mouse.

Zhang Y, Snider A, Willard L, Takemoto DJ, Lin D.

Biochem Biophys Res Commun. 2009 Jan 16;378(3):524-8. doi: 10.1016/j.bbrc.2008.11.082. Epub 2008 Dec 3.

Items per page

Supplemental Content

Write to the Help Desk