Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 40

Cited In for PubMed (Select 12525539)

1.

Extracellular matrix in the trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma.

Vranka JA, Kelley MJ, Acott TS, Keller KE.

Exp Eye Res. 2015 Apr;133:112-125. doi: 10.1016/j.exer.2014.07.014. Review.

PMID:
25819459
2.

Chondrodysplasias and TGFβ signaling.

Le Goff C, Cormier-Daire V.

Bonekey Rep. 2015 Mar 11;4:642. doi: 10.1038/bonekey.2015.9. eCollection 2015. Review.

PMID:
25798233
3.

Human eye development is characterized by coordinated expression of fibrillin isoforms.

Hubmacher D, Reinhardt DP, Plesec T, Schenke-Layland K, Apte SS.

Invest Ophthalmol Vis Sci. 2014 Nov 18;55(12):7934-44. doi: 10.1167/iovs.14-15453.

PMID:
25406291
4.

A novel missense mutation in ADAMTS10 in Norwegian Elkhound primary glaucoma.

Ahonen SJ, Kaukonen M, Nussdorfer FD, Harman CD, Komáromy AM, Lohi H.

PLoS One. 2014 Nov 5;9(11):e111941. doi: 10.1371/journal.pone.0111941. eCollection 2014. Erratum in: PLoS One. 2015;10(2):e0118256.

5.

Mutation survey of candidate genes in 40 Chinese patients with congenital ectopia lentis.

Li J, Jia X, Li S, Fang S, Guo X.

Mol Vis. 2014 Jul 18;20:1017-24. eCollection 2014.

6.
7.

Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis.

Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, Willing MC, Grange DK, Braverman AC, Miller NH, Morcuende JA, Tang NL, Lam TP, Ng BK, Cheng JC, Dobbs MB, Gurnett CA.

Hum Mol Genet. 2014 Oct 1;23(19):5271-82. doi: 10.1093/hmg/ddu224. Epub 2014 May 15.

PMID:
24833718
8.

The microfibril hypothesis of glaucoma: implications for treatment of elevated intraocular pressure.

Kuchtey J, Kuchtey RW.

J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):170-80. doi: 10.1089/jop.2013.0184. Epub 2014 Feb 12. Review.

9.

Molecular pathogenesis and management strategies of ectopia lentis.

Chandra A, Charteris D.

Eye (Lond). 2014 Feb;28(2):162-8. doi: 10.1038/eye.2013.274. Epub 2014 Jan 10. Review.

10.

Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils.

Baldwin AK, Cain SA, Lennon R, Godwin A, Merry CL, Kielty CM.

J Cell Sci. 2014 Jan 1;127(Pt 1):158-71. doi: 10.1242/jcs.134270. Epub 2013 Nov 4.

11.

Structure of the fibrillin-1 N-terminal domains suggests that heparan sulfate regulates the early stages of microfibril assembly.

Yadin DA, Robertson IB, McNaught-Davis J, Evans P, Stoddart D, Handford PA, Jensen SA, Redfield C.

Structure. 2013 Oct 8;21(10):1743-56. doi: 10.1016/j.str.2013.08.004. Epub 2013 Sep 12.

12.

Missense mutations in FBN1 exons 41 and 42 cause Weill-Marchesani syndrome with thoracic aortic disease and Marfan syndrome.

Cecchi A, Ogawa N, Martinez HR, Carlson A, Fan Y, Penny DJ, Guo DC, Eisenberg S, Safi H, Estrera A, Lewis RA, Meyers D, Milewicz DM.

Am J Med Genet A. 2013 Sep;161A(9):2305-10. doi: 10.1002/ajmg.a.36044. Epub 2013 Jul 29.

13.

Genetic dissection of marfan syndrome and related connective tissue disorders: an update 2012.

Hoffjan S.

Mol Syndromol. 2012 Aug;3(2):47-58. doi: 10.1159/000339441. Epub 2012 Jun 12.

14.

¹H, ¹³C and ¹⁵N assignments of the four N-terminal domains of human fibrillin-1.

Yadin DA, Robertson IB, Jensen SA, Handford PA, Redfield C.

Biomol NMR Assign. 2014 Apr;8(1):75-80. doi: 10.1007/s12104-012-9456-0. Epub 2012 Dec 23.

15.

Fibrillin-1 mutations causing Weill-Marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions.

Cain SA, McGovern A, Baldwin AK, Baldock C, Kielty CM.

PLoS One. 2012;7(11):e48634. doi: 10.1371/journal.pone.0048634. Epub 2012 Nov 2.

16.

Matrix-dependent perturbation of TGFβ signaling and disease.

Doyle JJ, Gerber EE, Dietz HC.

FEBS Lett. 2012 Jul 4;586(14):2003-15. doi: 10.1016/j.febslet.2012.05.027. Epub 2012 May 26. Review.

17.

Retinal vascular tortuosity in a patient with weill-marchesani syndrome.

Gallagher K, Salam T, Sin B, Gupta S, Zambarakji H.

Case Rep Ophthalmol Med. 2011;2011:952543. doi: 10.1155/2011/952543. Epub 2011 Dec 20.

18.

Microenvironmental regulation by fibrillin-1.

Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, Ono RN, Sasaki T, Wirtz MK, Samples JR, Fessler LI, Fessler JH, Sekiguchi K, Hayflick SJ, Sakai LY.

PLoS Genet. 2012 Jan;8(1):e1002425. doi: 10.1371/journal.pgen.1002425. Epub 2012 Jan 5.

19.

ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis.

Gabriel LA, Wang LW, Bader H, Ho JC, Majors AK, Hollyfield JG, Traboulsi EI, Apte SS.

Invest Ophthalmol Vis Sci. 2012 Jan 31;53(1):461-9. doi: 10.1167/iovs.10-5955.

20.

Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias.

Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y, Brady AF, Cordier MP, Devriendt K, Genevieve D, Kiper PÖ, Kitoh H, Krakow D, Lynch SA, Le Merrer M, Mégarbane A, Mortier G, Odent S, Polak M, Rohrbach M, Sillence D, Stolte-Dijkstra I, Superti-Furga A, Rimoin DL, Topouchian V, Unger S, Zabel B, Bole-Feysot C, Nitschke P, Handford P, Casanova JL, Boileau C, Apte SS, Munnich A, Cormier-Daire V.

Am J Hum Genet. 2011 Jul 15;89(1):7-14. doi: 10.1016/j.ajhg.2011.05.012. Epub 2011 Jun 16.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk