Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 21

1.

Quantum-enabled temporal and spectral mode conversion of microwave signals.

Andrews RW, Reed AP, Cicak K, Teufel JD, Lehnert KW.

Nat Commun. 2015 Nov 30;6:10021. doi: 10.1038/ncomms10021.

2.

Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

Yu L, Natarajan CM, Horikiri T, Langrock C, Pelc JS, Tanner MG, Abe E, Maier S, Schneider C, Höfling S, Kamp M, Hadfield RH, Fejer MM, Yamamoto Y.

Nat Commun. 2015 Nov 24;6:8955. doi: 10.1038/ncomms9955.

3.

A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

Heinze D, Breddermann D, Zrenner A, Schumacher S.

Nat Commun. 2015 Oct 5;6:8473. doi: 10.1038/ncomms9473.

4.

Polarization-Entangled Photon Pairs From Periodically-Poled Crystalline Waveguides Over a Range of Frequencies.

Heberle DA, Levine ZH.

J Res Natl Inst Stand Technol. 2013 Aug 15;118:375-80. doi: 10.6028/jres.118.018. eCollection 2013.

5.

Transform-limited single photons from a single quantum dot.

Kuhlmann AV, Prechtel JH, Houel J, Ludwig A, Reuter D, Wieck AD, Warburton RJ.

Nat Commun. 2015 Sep 8;6:8204. doi: 10.1038/ncomms9204.

6.

Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission.

Sapienza L, Davanço M, Badolato A, Srinivasan K.

Nat Commun. 2015 Jul 27;6:7833. doi: 10.1038/ncomms8833.

7.

Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography.

Gschrey M, Thoma A, Schnauber P, Seifried M, Schmidt R, Wohlfeil B, Krüger L, Schulze JH, Heindel T, Burger S, Schmidt F, Strittmatter A, Rodt S, Reitzenstein S.

Nat Commun. 2015 Jul 16;6:7662. doi: 10.1038/ncomms8662.

8.

The Role of Groove Periodicity in the Formation of Site-Controlled Quantum Dot Chains.

Schramm A, Hakkarainen TV, Tommila J, Guina M.

Nanoscale Res Lett. 2015 Dec;10(1):938. doi: 10.1186/s11671-015-0938-8. Epub 2015 May 28.

9.

Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.

Gong SH, Kim JH, Ko YH, Rodriguez C, Shin J, Lee YH, Dang le S, Zhang X, Cho YH.

Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5280-5. doi: 10.1073/pnas.1418049112. Epub 2015 Apr 13.

10.

Efficient single-mode photon-coupling device utilizing a nanofiber tip.

Chonan S, Kato S, Aoki T.

Sci Rep. 2014 Apr 24;4:4785. doi: 10.1038/srep04785.

11.
12.

Integrated spatial multiplexing of heralded single-photon sources.

Collins MJ, Xiong C, Rey IH, Vo TD, He J, Shahnia S, Reardon C, Krauss TF, Steel MJ, Clark AS, Eggleton BJ.

Nat Commun. 2013;4:2582. doi: 10.1038/ncomms3582.

13.

Two-photon interference between disparate sources for quantum networking.

McMillan AR, Labonté L, Clark AS, Bell B, Alibart O, Martin A, Wadsworth WJ, Tanzilli S, Rarity JG.

Sci Rep. 2013;3:2032. doi: 10.1038/srep02032.

14.

Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation.

Ates S, Agha I, Gulinatti A, Rech I, Badolato A, Srinivasan K.

Sci Rep. 2013;3:1397. doi: 10.1038/srep01397.

15.

III-V quantum light source and cavity-QED on silicon.

Luxmoore IJ, Toro R, Del Pozo-Zamudio O, Wasley NA, Chekhovich EA, Sanchez AM, Beanland R, Fox AM, Skolnick MS, Liu HY, Tartakovskii AI.

Sci Rep. 2013;3:1239. doi: 10.1038/srep01239. Epub 2013 Feb 7.

16.

Photoluminescence of a microcavity quantum dot system in the quantum strong-coupling regime.

Ishida N, Byrnes T, Nori F, Yamamoto Y.

Sci Rep. 2013;3:1180. doi: 10.1038/srep01180. Epub 2013 Jan 31.

17.

Single-photon emission from single InGaAs/GaAs quantum dots grown by droplet epitaxy at high substrate temperature.

Benyoucef M, Zuerbig V, Reithmaier JP, Kroh T, Schell AW, Aichele T, Benson O.

Nanoscale Res Lett. 2012 Aug 31;7(1):493. doi: 10.1186/1556-276X-7-493.

18.

The influence of temperature on the photoluminescence properties of single InAs quantum dots grown on patterned GaAs.

Tommila J, Strelow C, Schramm A, Hakkarainen TV, Dumitrescu M, Kipp T, Guina M.

Nanoscale Res Lett. 2012 Jun 19;7(1):313. doi: 10.1186/1556-276X-7-313.

19.

Enabling single-mode behavior over large areas with photonic Dirac cones.

Bravo-Abad J, Joannopoulos JD, Soljačić M.

Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9761-5. doi: 10.1073/pnas.1207335109. Epub 2012 Jun 4.

20.

Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling.

Birowosuto MD, Sumikura H, Matsuo S, Taniyama H, van Veldhoven PJ, Nötzel R, Notomi M.

Sci Rep. 2012;2:321. doi: 10.1038/srep00321. Epub 2012 Mar 19.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk