Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

Development of a dot blot assay with antibodies to recombinant "core" 14-3-3 protein: Evaluation of its usefulness in diagnosis of Creutzfeldt-Jakob disease.

Subramanian S, Mahadevan A, Satishchandra P, Shankar SK.

Ann Indian Acad Neurol. 2016 Apr-Jun;19(2):205-10. doi: 10.4103/0972-2327.176867.

2.

14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression.

Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, Thorat R, Basu S, Bhatt K, Hosing AS, Balyan R, Borde L, Kundu TK, Dalal SN.

Sci Rep. 2016 Jun 2;6:26580. doi: 10.1038/srep26580.

3.

Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling.

Ermert AL, Mailliet K, Hughes J.

Front Plant Sci. 2016 May 12;7:613. doi: 10.3389/fpls.2016.00613. eCollection 2016.

4.

Practical Approaches for Mining Frequent Patterns in Molecular Datasets.

Naulaerts S, Moens S, Engelen K, Berghe WV, Goethals B, Laukens K, Meysman P.

Bioinform Biol Insights. 2016 May 2;10:37-47. doi: 10.4137/BBI.S38419. eCollection 2016. Review.

5.

14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila.

Le TP, Vuong LT, Kim AR, Hsu YC, Choi KW.

Nat Commun. 2016 May 6;7:11501. doi: 10.1038/ncomms11501.

6.

Deficiency of 14-3-3ε and 14-3-3ζ by the Wnt1 promoter-driven Cre recombinase results in pigmentation defects.

Cornell B, Toyo-oka K.

BMC Res Notes. 2016 Mar 22;9:180. doi: 10.1186/s13104-016-1980-z.

7.

Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

Stevers LM, Lam CV, Leysen SF, Meijer FA, van Scheppingen DS, de Vries RM, Carlile GW, Milroy LG, Thomas DY, Brunsveld L, Ottmann C.

Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1152-61. doi: 10.1073/pnas.1516631113. Epub 2016 Feb 17.

PMID:
26888287
8.

p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1.

Tollenaere MA, Villumsen BH, Blasius M, Nielsen JC, Wagner SA, Bartek J, Beli P, Mailand N, Bekker-Jensen S.

Nat Commun. 2015 Nov 30;6:10075. doi: 10.1038/ncomms10075.

9.

Mapping of the Sequences Directing Localization of the Drosophila Germ Cell-Expressed Protein (GCE).

Greb-Markiewicz B, Sadowska D, Surgut N, Godlewski J, Zarębski M, Ożyhar A.

PLoS One. 2015 Jul 17;10(7):e0133307. doi: 10.1371/journal.pone.0133307. eCollection 2015.

10.

Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants.

Shen K, Ramirez B, Mapes B, Shen GR, Gokhale V, Brown ME, Santarsiero B, Ishii Y, Dudek SM, Wang T, Garcia JG.

PLoS One. 2015 Jun 25;10(6):e0130515. doi: 10.1371/journal.pone.0130515. eCollection 2015.

11.

Phosphorylation of the exchange factor DENND3 by ULK in response to starvation activates Rab12 and induces autophagy.

Xu J, Fotouhi M, McPherson PS.

EMBO Rep. 2015 Jun;16(6):709-18. doi: 10.15252/embr.201440006. Epub 2015 Apr 29.

12.

AKT and 14-3-3 regulate Notch4 nuclear localization.

Ramakrishnan G, Davaakhuu G, Chung WC, Zhu H, Rana A, Filipovic A, Green AR, Atfi A, Pannuti A, Miele L, Tzivion G.

Sci Rep. 2015 Mar 5;5:8782. doi: 10.1038/srep08782.

13.

14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides.

Madeira F, Tinti M, Murugesan G, Berrett E, Stafford M, Toth R, Cole C, MacKintosh C, Barton GJ.

Bioinformatics. 2015 Jul 15;31(14):2276-83. doi: 10.1093/bioinformatics/btv133. Epub 2015 Mar 3.

14.

A visual review of the interactome of LRRK2: Using deep-curated molecular interaction data to represent biology.

Porras P, Duesbury M, Fabregat A, Ueffing M, Orchard S, Gloeckner CJ, Hermjakob H.

Proteomics. 2015 Apr;15(8):1390-404. doi: 10.1002/pmic.201400390. Epub 2015 Mar 21. Review.

15.

Arg kinase-binding protein 2 (ArgBP2) interaction with α-actinin and actin stress fibers inhibits cell migration.

Anekal PV, Yong J, Manser E.

J Biol Chem. 2015 Jan 23;290(4):2112-25. doi: 10.1074/jbc.M114.610725. Epub 2014 Nov 26.

16.

Dissection of binding between a phosphorylated tyrosine hydroxylase peptide and 14-3-3zeta: A complex story elucidated by NMR.

Hritz J, Byeon IJ, Krzysiak T, Martinez A, Sklenar V, Gronenborn AM.

Biophys J. 2014 Nov 4;107(9):2185-94. doi: 10.1016/j.bpj.2014.08.039.

17.

Cables1 complex couples survival signaling to the cell death machinery.

Shi Z, Park HR, Du Y, Li Z, Cheng K, Sun SY, Li Z, Fu H, Khuri FR.

Cancer Res. 2015 Jan 1;75(1):147-58. doi: 10.1158/0008-5472.CAN-14-0036. Epub 2014 Oct 31.

18.

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression.

Choi WJ.

Biomol Ther (Seoul). 2014 Jul;22(4):308-13. doi: 10.4062/biomolther.2014.057.

19.

Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6.

Chakrabarti S, Bonneau F, Schüssler S, Eppinger E, Conti E.

Nucleic Acids Res. 2014 Aug;42(14):9447-60. doi: 10.1093/nar/gku578. Epub 2014 Jul 10.

20.

Phosphorylation dependence and stoichiometry of the complex formed by tyrosine hydroxylase and 14-3-3γ.

Kleppe R, Rosati S, Jorge-Finnigan A, Alvira S, Ghorbani S, Haavik J, Valpuesta JM, Heck AJ, Martinez A.

Mol Cell Proteomics. 2014 Aug;13(8):2017-30. doi: 10.1074/mcp.M113.035709. Epub 2014 Jun 19.

Items per page

Supplemental Content

Write to the Help Desk