Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 252

Similar articles for PubMed (Select 9792173)

1.

The cystine knot structure of ion channel toxins and related polypeptides.

Norton RS, Pallaghy PK.

Toxicon. 1998 Nov;36(11):1573-83.

PMID:
9792173
2.

Origin of neurotoxins from defensins.

Zhu LM, Gao B, Zhu SY.

Sheng Li Xue Bao. 2015 Jun 25;67(3):239-47.

3.

Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus.

Kozlov SA, Lazarev VN, Kostryukova ES, Selezneva OV, Ospanova EA, Alexeev DG, Govorun VM, Grishin EV.

Sci Data. 2014 Aug 5;1:140023. doi: 10.1038/sdata.2014.23. eCollection 2014.

4.

Cystine-knot peptides targeting cancer-relevant human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4).

Maaß F, Wüstehube-Lausch J, Dickgießer S, Valldorf B, Reinwarth M, Schmoldt HU, Daneschdar M, Avrutina O, Sahin U, Kolmar H.

J Pept Sci. 2015 May 10. doi: 10.1002/psc.2782. [Epub ahead of print]

PMID:
25964162
5.

A Disulfide Stabilized β-Sandwich Defines the Structure of a New Cysteine Framework M-Superfamily Conotoxin.

Kancherla AK, Meesala S, Jorwal P, Palanisamy R, Sikdar SK, Sarma SP.

ACS Chem Biol. 2015 May 18. [Epub ahead of print]

PMID:
25961405
6.

Initial description of primate-specific cystine-knot Prometheus genes and differential gene expansions of D-dopachrome tautomerase genes.

Premzl M.

Meta Gene. 2015 Apr 25;4:118-28. doi: 10.1016/j.mgene.2015.02.005. eCollection 2015 Jun.

7.

Allotides: Proline-Rich Cystine Knot α-Amylase Inhibitors from Allamanda cathartica.

Nguyen PQ, Luu TT, Bai Y, Nguyen GK, Pervushin K, Tam JP.

J Nat Prod. 2015 Apr 24;78(4):695-704. doi: 10.1021/np500866c. Epub 2015 Apr 2.

PMID:
25832441
8.

A cactus-derived toxin-like cystine knot Peptide with selective antimicrobial activity.

Aboye TL, Strömstedt AA, Gunasekera S, Bruhn JG, El-Seedi H, Rosengren KJ, Göransson U.

Chembiochem. 2015 May 4;16(7):1068-77. doi: 10.1002/cbic.201402704. Epub 2015 Mar 27.

PMID:
25821084
9.

Seven novel modulators of the analgesic target NaV 1.7 uncovered using a high-throughput venom-based discovery approach.

Klint JK, Smith JJ, Vetter I, Rupasinghe DB, Er SY, Senff S, Herzig V, Mobli M, Lewis RJ, Bosmans F, King GF.

Br J Pharmacol. 2015 May;172(10):2445-58. doi: 10.1111/bph.13081. Epub 2015 Mar 4.

PMID:
25754331
10.

Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Na(V)1.7 sodium channel.

Murray JK, Ligutti J, Liu D, Zou A, Poppe L, Li H, Andrews KL, Moyer BD, McDonough SI, Favreau P, Stöcklin R, Miranda LP.

J Med Chem. 2015 Mar 12;58(5):2299-314. doi: 10.1021/jm501765v. Epub 2015 Feb 19.

PMID:
25658507
11.

Structure of membrane-active toxin from crab spider Heriaeus melloteei suggests parallel evolution of sodium channel gating modifiers in Araneomorphae and Mygalomorphae.

Berkut AA, Peigneur S, Myshkin MY, Paramonov AS, Lyukmanova EN, Arseniev AS, Grishin EV, Tytgat J, Shenkarev ZO, Vassilevski AA.

J Biol Chem. 2015 Jan 2;290(1):492-504. doi: 10.1074/jbc.M114.595678. Epub 2014 Oct 28.

PMID:
25352595
12.

Holocyclotoxin-1, a cystine knot toxin from Ixodes holocyclus.

Vink S, Daly NL, Steen N, Craik DJ, Alewood PF.

Toxicon. 2014 Nov;90:308-17. doi: 10.1016/j.toxicon.2014.08.068. Epub 2014 Aug 27.

PMID:
25172536
13.

Cystine-knot peptides: emerging tools for cancer imaging and therapy.

Ackerman SE, Currier NV, Bergen JM, Cochran JR.

Expert Rev Proteomics. 2014 Oct;11(5):561-72. doi: 10.1586/14789450.2014.932251. Epub 2014 Aug 28. Review.

PMID:
25163524
14.

Studies examining the relationship between the chemical structure of protoxin II and its activity on voltage gated sodium channels.

Park JH, Carlin KP, Wu G, Ilyin VI, Musza LL, Blake PR, Kyle DJ.

J Med Chem. 2014 Aug 14;57(15):6623-31. doi: 10.1021/jm500687u. Epub 2014 Jul 24.

PMID:
25026046
15.

iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels.

Ding H, Deng EZ, Yuan LF, Liu L, Lin H, Chen W, Chou KC.

Biomed Res Int. 2014;2014:286419. doi: 10.1155/2014/286419. Epub 2014 Jun 1.

16.

Structure of the yellow sac spider Cheiracanthium punctorium genes provides clues to evolution of insecticidal two-domain knottin toxins.

Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA.

Insect Mol Biol. 2014 Aug;23(4):527-38. doi: 10.1111/imb.12097. Epub 2014 Apr 10. Erratum in: Insect Mol Biol. 2014 Dec;23(6):857.

PMID:
24717175
17.

Solution structure of a sponge-derived cystine knot peptide and its notable stability.

Li H, Su M, Hamann MT, Bowling JJ, Kim HS, Jung JH.

J Nat Prod. 2014 Feb 28;77(2):304-10. doi: 10.1021/np400899a. Epub 2014 Feb 5.

18.

Design of phage-displayed cystine-stabilized mini-protein libraries for proteinaceous binder engineering.

Chang HJ, Yang AS.

Methods Mol Biol. 2014;1088:1-17. doi: 10.1007/978-1-62703-673-3_1.

PMID:
24146393
19.

Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius.

Vassilevski AA, Sachkova MY, Ignatova AA, Kozlov SA, Feofanov AV, Grishin EV.

FEBS J. 2013 Dec;280(23):6247-61. doi: 10.1111/febs.12547.

PMID:
24118933
20.

Novel inhibitor cystine knot peptides from Momordica charantia.

He WJ, Chan LY, Clark RJ, Tang J, Zeng GZ, Franco OL, Cantacessi C, Craik DJ, Daly NL, Tan NH.

PLoS One. 2013 Oct 8;8(10):e75334. doi: 10.1371/journal.pone.0075334. eCollection 2013.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk