Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 265

1.

Anatomy of motor learning. II. Subcortical structures and learning by trial and error.

Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE.

J Neurophysiol. 1997 Mar;77(3):1325-37.

PMID:
9084600
[PubMed - indexed for MEDLINE]
Free Article
2.

A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies.

Jueptner M, Weiller C.

Brain. 1998 Aug;121 ( Pt 8):1437-49. Review.

PMID:
9712006
[PubMed - indexed for MEDLINE]
Free Article
3.

Anatomy of motor learning. I. Frontal cortex and attention to action.

Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE.

J Neurophysiol. 1997 Mar;77(3):1313-24.

PMID:
9084599
[PubMed - indexed for MEDLINE]
Free Article
4.

Cerebral structures participating in motor preparation in humans: a positron emission tomography study.

Deiber MP, Ibañez V, Sadato N, Hallett M.

J Neurophysiol. 1996 Jan;75(1):233-47.

PMID:
8822554
[PubMed - indexed for MEDLINE]
5.

A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction.

Boecker H, Ceballos-Baumann AO, Bartenstein P, Dagher A, Forster K, Haslinger B, Brooks DJ, Schwaiger M, Conrad B.

Neuroimage. 2002 Oct;17(2):999-1009.

PMID:
12377173
[PubMed - indexed for MEDLINE]
6.

Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation.

Sakai K, Ramnani N, Passingham RE.

J Neurophysiol. 2002 Oct;88(4):2035-46.

PMID:
12364526
[PubMed - indexed for MEDLINE]
Free Article
7.

Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.

Winstein CJ, Grafton ST, Pohl PS.

J Neurophysiol. 1997 Mar;77(3):1581-94.

PMID:
9084621
[PubMed - indexed for MEDLINE]
Free Article
8.

Human cerebellum plays an important role in memory-timed finger movement: an fMRI study.

Kawashima R, Okuda J, Umetsu A, Sugiura M, Inoue K, Suzuki K, Tabuchi M, Tsukiura T, Narayan SL, Nagasaka T, Yanagawa I, Fujii T, Takahashi S, Fukuda H, Yamadori A.

J Neurophysiol. 2000 Feb;83(2):1079-87.

PMID:
10669519
[PubMed - indexed for MEDLINE]
Free Article
9.

Motor sequence learning: a study with positron emission tomography.

Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE.

J Neurosci. 1994 Jun;14(6):3775-90.

PMID:
8207487
[PubMed - indexed for MEDLINE]
Free Article
10.

The relevance of sensory input for the cerebellar control of movements.

Jueptner M, Ottinger S, Fellows SJ, Adamschewski J, Flerich L, Müller SP, Diener HC, Thilmann AF, Weiller C.

Neuroimage. 1997 Jan;5(1):41-8.

PMID:
9038283
[PubMed - indexed for MEDLINE]
11.

Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand.

François-Brosseau FE, Martinu K, Strafella AP, Petrides M, Simard F, Monchi O.

Eur J Neurosci. 2009 Mar;29(6):1277-86. doi: 10.1111/j.1460-9568.2009.06671.x.

PMID:
19302163
[PubMed - indexed for MEDLINE]
12.

Patterns of regional brain activation associated with different forms of motor learning.

Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelberg D.

Brain Res. 2000 Jul 14;871(1):127-45.

PMID:
10882792
[PubMed - indexed for MEDLINE]
13.

Distinct basal ganglia territories are engaged in early and advanced motor sequence learning.

Lehéricy S, Benali H, Van de Moortele PF, Pélégrini-Issac M, Waechter T, Ugurbil K, Doyon J.

Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12566-71. Epub 2005 Aug 17.

PMID:
16107540
[PubMed - indexed for MEDLINE]
Free PMC Article
14.

Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study.

Kuhtz-Buschbeck JP, Mahnkopf C, Holzknecht C, Siebner H, Ulmer S, Jansen O.

Eur J Neurosci. 2003 Dec;18(12):3375-87.

PMID:
14686911
[PubMed - indexed for MEDLINE]
15.

Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex.

Hadland KA, Rushworth MF, Passingham RE, Jahanshahi M, Rothwell JC.

J Cogn Neurosci. 2001 Nov 15;13(8):1097-108.

PMID:
11784448
[PubMed - indexed for MEDLINE]
16.

Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET.

Boecker H, Dagher A, Ceballos-Baumann AO, Passingham RE, Samuel M, Friston KJ, Poline J, Dettmers C, Conrad B, Brooks DJ.

J Neurophysiol. 1998 Feb;79(2):1070-80. Erratum in: J Neurophysiol 1998 Jun;79(6):3301.

PMID:
9463462
[PubMed - indexed for MEDLINE]
Free Article
17.

How does the brain create rhythms?

Szirmai I.

Ideggyogy Sz. 2010 Jan 30;63(1-2):13-23. Review.

PMID:
20420120
[PubMed - indexed for MEDLINE]
18.

Role of the cerebellum in implicit motor skill learning: a PET study.

Matsumura M, Sadato N, Kochiyama T, Nakamura S, Naito E, Matsunami K, Kawashima R, Fukuda H, Yonekura Y.

Brain Res Bull. 2004 Jul 15;63(6):471-83.

PMID:
15249112
[PubMed - indexed for MEDLINE]
19.

Basal ganglia contribution to the initiation of corrective submovements.

Tunik E, Houk JC, Grafton ST.

Neuroimage. 2009 Oct 1;47(4):1757-66. doi: 10.1016/j.neuroimage.2009.04.077. Epub 2009 May 5.

PMID:
19422921
[PubMed - indexed for MEDLINE]
20.

The effect of movement frequency on cerebral activation: a positron emission tomography study.

Jenkins IH, Passingham RE, Brooks DJ.

J Neurol Sci. 1997 Oct 22;151(2):195-205.

PMID:
9349676
[PubMed - indexed for MEDLINE]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk