Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum.

Peters-Wendisch PG, Wendisch VF, de Graaf AA, Eikmanns BJ, Sahm H.

Arch Microbiol. 1996 Jun;165(6):387-96.

PMID:
8661932
2.

Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.

Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ.

J Mol Microbiol Biotechnol. 2001 Apr;3(2):295-300.

PMID:
11321586
3.
4.

Pathway analysis and metabolic engineering in Corynebacterium glutamicum.

Sahm H, Eggeling L, de Graaf AA.

Biol Chem. 2000 Sep-Oct;381(9-10):899-910. Review.

PMID:
11076021
5.

[Glyoxylate cycle is required for the overproduction of glutamate but is not essential for Corynebacterium glutamicum growth on glucose].

Yu BQ, Shen W, Wang ZX, Zhuge J.

Sheng Wu Gong Cheng Xue Bao. 2005 Mar;21(2):270-4. Chinese.

PMID:
16013488
8.

In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum.

Petersen S, de Graaf AA, Eggeling L, Möllney M, Wiechert W, Sahm H.

J Biol Chem. 2000 Nov 17;275(46):35932-41.

9.

Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum.

Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M.

J Biosci Bioeng. 2008 Jul;106(1):51-8. doi: 10.1263/jbb.106.51.

PMID:
18691531
10.

Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.

Riedel C, Rittmann D, Dangel P, Möckel B, Petersen S, Sahm H, Eikmanns BJ.

J Mol Microbiol Biotechnol. 2001 Oct;3(4):573-83.

PMID:
11565516
11.
12.

13C-NMR studies of Corynebacterium melassecola metabolic pathways.

Rollin C, Morgant V, Guyonvarch A, Guerquin-Kern JL.

Eur J Biochem. 1995 Jan 15;227(1-2):488-93.

13.

Serial flux mapping of Corynebacterium glutamicum during fed-batch L-lysine production using the sensor reactor approach.

Drysch A, El Massaoudi M, Wiechert W, de Graaf AA, Takors R.

Biotechnol Bioeng. 2004 Mar 5;85(5):497-505.

PMID:
14760690
14.
16.

A gene homologous to beta-type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions.

Mitsuhashi S, Ohnishi J, Hayashi M, Ikeda M.

Appl Microbiol Biotechnol. 2004 Feb;63(5):592-601. Epub 2003 Aug 21.

PMID:
12937954
17.

Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis.

Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H.

Microb Cell Fact. 2007 Jun 23;6:19.

18.

Double deletion of dtsR1 and pyc induce efficient L: -glutamate overproduction in Corynebacterium glutamicum.

Yao W, Deng X, Zhong H, Liu M, Zheng P, Sun Z, Zhang Y.

J Ind Microbiol Biotechnol. 2009 Jul;36(7):911-21. doi: 10.1007/s10295-009-0569-0. Epub 2009 May 2.

PMID:
19408028
20.

A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant.

Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M.

Appl Microbiol Biotechnol. 2002 Feb;58(2):217-23.

PMID:
11876415
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk