Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 95

1.

A novel approach to protein-protein interaction: complex formation between the p53 tumor suppressor and the HIV Tat proteins.

Longo F, Marchetti MA, Castagnoli L, Battaglia PA, Gigliani F.

Biochem Biophys Res Commun. 1995 Jan 5;206(1):326-34.

PMID:
7818536
[PubMed - indexed for MEDLINE]
2.

Genetic tests to reveal TAT homodimer formation and select TAT homodimer inhibitor.

Battaglia PA, Longo F, Ciotta C, Del Grosso MF, Ambrosini E, Gigliani F.

Biochem Biophys Res Commun. 1994 Jun 15;201(2):701-8.

PMID:
8003005
[PubMed - indexed for MEDLINE]
3.

Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat.

Gabizon R, Mor M, Rosenberg MM, Britan L, Hayouka Z, Kotler M, Shalev DE, Friedler A.

Biopolymers. 2008;90(2):105-16. doi: 10.1002/bip.20919.

PMID:
18189286
[PubMed - indexed for MEDLINE]
4.

Transdominant mutants of I kappa B alpha block Tat-tumor necrosis factor synergistic activation of human immunodeficiency virus type 1 gene expression and virus multiplication.

Beauparlant P, Kwon H, Clarke M, Lin R, Sonenberg N, Wainberg M, Hiscott J.

J Virol. 1996 Sep;70(9):5777-85.

PMID:
8709193
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

Functional interaction between the HIV transactivator Tat and the transcriptional coactivator PC4 in T cells.

Holloway AF, Occhiodoro F, Mittler G, Meisterernst M, Shannon MF.

J Biol Chem. 2000 Jul 14;275(28):21668-77.

PMID:
10887206
[PubMed - indexed for MEDLINE]
Free Article
6.

HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein beta (NF-IL6) transcription factors.

Ambrosino C, Ruocco MR, Chen X, Mallardo M, Baudi F, Trematerra S, Quinto I, Venuta S, Scala G.

J Biol Chem. 1997 Jun 6;272(23):14883-92.

PMID:
9169458
[PubMed - indexed for MEDLINE]
Free Article
7.

Transcriptional activation in vitro by the human immunodeficiency virus type 1 Tat protein: evidence for specific interaction with a coactivator(s).

Song CZ, Loewenstein PM, Green M.

Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9357-61.

PMID:
7937769
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

A selection system to study protein-RNA interactions: functional display of HIV-1 Tat protein on filamentous bacteriophage M13.

Hoffmann S, Willbold D.

Biochem Biophys Res Commun. 1997 Jun 27;235(3):806-11.

PMID:
9207243
[PubMed - indexed for MEDLINE]
9.

Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins.

Furia B, Deng L, Wu K, Baylor S, Kehn K, Li H, Donnelly R, Coleman T, Kashanchi F.

J Biol Chem. 2002 Feb 15;277(7):4973-80. Epub 2001 Dec 5.

PMID:
11739381
[PubMed - indexed for MEDLINE]
Free Article
10.

Human immunodeficiency virus type-1 Tat/co-activator acetyltransferase interactions inhibit p53Lys-320 acetylation and p53-responsive transcription.

Harrod R, Nacsa J, Van Lint C, Hansen J, Karpova T, McNally J, Franchini G.

J Biol Chem. 2003 Apr 4;278(14):12310-8. Epub 2002 Dec 24.

PMID:
12501250
[PubMed - indexed for MEDLINE]
Free Article
11.

Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat.

Ryu J, Lee HJ, Kim KA, Lee JY, Lee KS, Park J, Choi SY.

Mol Cells. 2004 Apr 30;17(2):353-9.

PMID:
15179054
[PubMed - indexed for MEDLINE]
Free Article
12.

Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains.

Carruth LM, Hardwick JM, Morse BA, Clements JE.

J Virol. 1994 Oct;68(10):6137-46.

PMID:
8083955
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

The RTP site shared by the HIV-1 Tat protein and the 11S regulator subunit alpha is crucial for their effects on proteasome function including antigen processing.

Huang X, Seifert U, Salzmann U, Henklein P, Preissner R, Henke W, Sijts AJ, Kloetzel PM, Dubiel W.

J Mol Biol. 2002 Nov 1;323(4):771-82.

PMID:
12419264
[PubMed - indexed for MEDLINE]
14.

Functional cross-talk of HIV-1 Tat with p53 through its C-terminal domain.

Ariumi Y, Kaida A, Hatanaka M, Shimotohno K.

Biochem Biophys Res Commun. 2001 Sep 21;287(2):556-61.

PMID:
11554765
[PubMed - indexed for MEDLINE]
15.

Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus.

Bogerd HP, Fridell RA, Blair WS, Cullen BR.

J Virol. 1993 Aug;67(8):5030-4.

PMID:
8331738
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

Interactions of the HIV-1 Tat and RAP74 proteins with the RNA polymerase II CTD phosphatase FCP1.

Abbott KL, Archambault J, Xiao H, Nguyen BD, Roeder RG, Greenblatt J, Omichinski JG, Legault P.

Biochemistry. 2005 Mar 1;44(8):2716-31.

PMID:
15723517
[PubMed - indexed for MEDLINE]
17.

Molecular recognition of the human coactivator CBP by the HIV-1 transcriptional activator Tat.

Vendel AC, Lumb KJ.

Biochemistry. 2003 Feb 4;42(4):910-6.

PMID:
12549909
[PubMed - indexed for MEDLINE]
18.

High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region.

Churcher MJ, Lamont C, Hamy F, Dingwall C, Green SM, Lowe AD, Butler JG, Gait MJ, Karn J.

J Mol Biol. 1993 Mar 5;230(1):90-110.

PMID:
8450553
[PubMed - indexed for MEDLINE]
19.

Probing the proximity of the core domain of an HIV-1 Tat fragment in a Tat-TAR complex by affinity cleaving.

Huq I, Rana TM.

Biochemistry. 1997 Oct 14;36(41):12592-9.

PMID:
9376365
[PubMed - indexed for MEDLINE]
20.

NMR mapping of the HIV-1 Tat interaction surface of the KIX domain of the human coactivator CBP.

Vendel AC, Lumb KJ.

Biochemistry. 2004 Feb 3;43(4):904-8.

PMID:
14744133
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk