Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 98

Similar articles for PubMed (Select 25109983)

1.

Mitochondria and redox homoeostasis as chemotherapeutic targets.

Briehl MM, Tome ME, Wilkinson ST, Jaramillo MC, Lee K.

Biochem Soc Trans. 2014 Aug;42(4):939-44. doi: 10.1042/BST20140087.

PMID:
25109983
2.

The copper chelator ATN-224 induces peroxynitrite-dependent cell death in hematological malignancies.

Lee K, Briehl MM, Mazar AP, Batinic-Haberle I, Reboucas JS, Glinsmann-Gibson B, Rimsza LM, Tome ME.

Free Radic Biol Med. 2013 Jul;60:157-67. doi: 10.1016/j.freeradbiomed.2013.02.003. Epub 2013 Feb 14.

3.

Cellular metabolic and autophagic pathways: traffic control by redox signaling.

Dodson M, Darley-Usmar V, Zhang J.

Free Radic Biol Med. 2013 Oct;63:207-21. doi: 10.1016/j.freeradbiomed.2013.05.014. Epub 2013 May 20. Review.

4.

Mitochondrial biogenesis: pharmacological approaches.

Valero T.

Curr Pharm Des. 2014;20(35):5507-9.

PMID:
24606795
5.

Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL.

Robinson GL, Dinsdale D, Macfarlane M, Cain K.

Oncogene. 2012 Nov 29;31(48):4996-5006. doi: 10.1038/onc.2012.13. Epub 2012 Feb 6.

PMID:
22310286
6.

Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia.

Plosker GL, Figgitt DP.

Drugs. 2003;63(8):803-43. Review.

PMID:
12662126
7.

Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: a seemingly contradictory dual role and an integrative hypothesis.

Negrette-Guzmán M, Huerta-Yepez S, Tapia E, Pedraza-Chaverri J.

Free Radic Biol Med. 2013 Dec;65:1078-89. doi: 10.1016/j.freeradbiomed.2013.08.182. Epub 2013 Aug 30.

PMID:
23999506
8.

Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells.

Raza H, John A, Brown EM, Benedict S, Kambal A.

Toxicol Appl Pharmacol. 2008 Jan 15;226(2):161-8. Epub 2007 Sep 11.

PMID:
17935746
9.

Phenethyl isothiocyanate induces calcium mobilization and mitochondrial cell death pathway in cholangiocarcinoma KKU-M214 cells.

Tusskorn O, Senggunprai L, Prawan A, Kukongviriyapan U, Kukongviriyapan V.

BMC Cancer. 2013 Dec 5;13:571. doi: 10.1186/1471-2407-13-571.

10.

Apoptosis-resistant phenotype in HL-60-derived cells HCW-2 is related to changes in expression of stress-induced proteins that impact on redox status and mitochondrial metabolism.

Salvioli S, Storci G, Pinti M, Quaglino D, Moretti L, Merlo-Pich M, Lenaz G, Filosa S, Fico A, Bonafè M, Monti D, Troiano L, Nasi M, Cossarizza A, Franceschi C.

Cell Death Differ. 2003 Feb;10(2):163-74.

11.

De novo galectin-3 expression influences the response of melanoma cells to isatin-Schiff base copper (II) complex-induced oxidative stimulus.

Borges BE, Teixeira VR, Appel MH, Steclan CA, Rigo F, Filipak Neto F, da Costa Ferreira AM, Chammas R, Zanata SM, Nakao LS.

Chem Biol Interact. 2013 Oct 25;206(1):37-46. doi: 10.1016/j.cbi.2013.08.005. Epub 2013 Aug 27.

12.
13.

Phenethyl isothiocyanate induces apoptosis of cholangiocarcinoma cells through interruption of glutathione and mitochondrial pathway.

Tusskorn O, Prawan A, Senggunprai L, Kukongviriyapan U, Kukongviriyapan V.

Naunyn Schmiedebergs Arch Pharmacol. 2013 Nov;386(11):1009-16. doi: 10.1007/s00210-013-0906-8. Epub 2013 Aug 15. Erratum in: Naunyn Schmiedebergs Arch Pharmacol. 2013 Nov;386(11):1017.

PMID:
23949086
14.

The mitochondrial voltage-dependent anion channel 1 in tumor cells.

Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS.

Biochim Biophys Acta. 2014 Nov 4. pii: S0005-2736(14)00375-7. doi: 10.1016/j.bbamem.2014.10.040. [Epub ahead of print] Review.

PMID:
25448878
15.

Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells.

Wang B, Van Veldhoven PP, Brees C, Rubio N, Nordgren M, Apanasets O, Kunze M, Baes M, Agostinis P, Fransen M.

Free Radic Biol Med. 2013 Dec;65:882-94. doi: 10.1016/j.freeradbiomed.2013.08.173. Epub 2013 Aug 27.

PMID:
23988789
16.

2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway.

Schweikl H, Petzel C, Bolay C, Hiller KA, Buchalla W, Krifka S.

Biomaterials. 2014 Mar;35(9):2890-904. doi: 10.1016/j.biomaterials.2013.12.044. Epub 2014 Jan 8.

PMID:
24411679
17.

Increased cytochrome c correlates with poor survival in aggressive lymphoma.

Wilkinson ST, Johnson DB, Tardif HL, Tome ME, Briehl MM.

Oncol Lett. 2010 Mar;1(2):227-230.

18.
19.

Changes in glutathione redox cycling and oxidative stress response in the malignant progression of NB2 lymphoma cells.

Meyer TE, Liang HQ, Buckley AR, Buckley DJ, Gout PW, Green EH, Bode AM.

Int J Cancer. 1998 Jul 3;77(1):55-63.

PMID:
9639394
20.

Importance of cytochrome c redox state for ceramide-induced apoptosis of human mammary adenocarcinoma cells.

Parihar A, Parihar MS, Nazarewicz R, Ghafourifar P.

Biochim Biophys Acta. 2010 Jul;1800(7):646-54. doi: 10.1016/j.bbagen.2010.03.022. Epub 2010 Apr 8.

PMID:
20382204
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk