Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Comparative investigation of phosphate-based composite cathode materials for lithium-ion batteries.

Zheng JC, Han YD, Zhang B, Shen C, Ming L, Zhang JF.

ACS Appl Mater Interfaces. 2014 Aug 27;6(16):13520-6. doi: 10.1021/am502601r. Epub 2014 Aug 14.

PMID:
25090161
2.

A Bi-doped Li3V2(PO4)3/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries.

Cheng Y, Feng K, Zhou W, Zhang H, Li X, Zhang H.

Dalton Trans. 2015 Oct 28;44(40):17579-86. doi: 10.1039/c5dt03225c. Epub 2015 Sep 22.

PMID:
26391695
3.

Preparation of V-Doped LiFePO4/C as the Optimized Cathode Material for Lithium Ion Batteries.

Sun P, Zhang H, Shen K, Fan Q, Xu Q.

J Nanosci Nanotechnol. 2015 Apr;15(4):2667-72.

PMID:
26353479
4.

Manipulating size of Li3V2(PO4)3 with reduced graphene oxide: towards high-performance composite cathode for lithium ion batteries.

Zhu X, Yan Z, Wu W, Zeng W, Du Y, Zhong Y, Zhai H, Ji H, Zhu Y.

Sci Rep. 2014 Aug 29;4:5768. doi: 10.1038/srep05768.

5.

Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries.

Duan W, Hu Z, Zhang K, Cheng F, Tao Z, Chen J.

Nanoscale. 2013 Jul 21;5(14):6485-90. doi: 10.1039/c3nr01617j. Epub 2013 Jun 10.

PMID:
23749042
6.

Synthesis and electrochemical performance of nano-metastructured LiFePO4/C cathode material.

Zhi X, Liang G, Wang L, Cui J, Yang L.

J Nanosci Nanotechnol. 2010 Nov;10(11):7676-9.

PMID:
21138008
7.

Highly Efficient Storage of Pulse Energy Produced by Triboelectric Nanogenerator in Li3V2(PO4)3/C Cathode Li-Ion Batteries.

Nan X, Zhang C, Liu C, Liu M, Wang ZL, Cao G.

ACS Appl Mater Interfaces. 2016 Jan 13;8(1):862-70. doi: 10.1021/acsami.5b10262. Epub 2015 Dec 30.

PMID:
26681671
8.

A Promising Na3V2(PO4)3/Ag + Graphene Composites as Cathode Material for Hybrid Lithium Batteries.

Choi MS, Kim HS, Lee YM, Lee SM, Jin BS.

J Nanosci Nanotechnol. 2015 Nov;15(11):8937-42.

PMID:
26726622
9.

Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries.

Zhang R, Zhang Y, Zhu K, Du F, Fu Q, Yang X, Wang Y, Bie X, Chen G, Wei Y.

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12523-30. doi: 10.1021/am502387z. Epub 2014 Jul 23.

PMID:
25010184
10.

Rational Design and Facial Synthesis of Li3V2(PO4)3@C Nanocomposites Using Carbon with Different Dimensions for Ultrahigh-Rate Lithium-Ion Batteries.

Mao WF, Fu YB, Zhao H, Ai G, Dai YL, Meng D, Zhang XH, Qu D, Liu G, Battaglia VS, Tang ZY.

ACS Appl Mater Interfaces. 2015 Jun 10;7(22):12057-66. doi: 10.1021/acsami.5b02242. Epub 2015 May 29.

PMID:
25992951
11.

Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.

Li D, Tian M, Xie R, Li Q, Fan X, Gou L, Zhao P, Ma S, Shi Y, Yong HT.

Nanoscale. 2014 Mar 21;6(6):3302-8. doi: 10.1039/c3nr04927b. Epub 2014 Feb 10.

PMID:
24510276
12.

Research on high rate capabilities B-substituted LiFePO4.

Wang F, Zhang Y, Chen C.

J Nanosci Nanotechnol. 2013 Feb;13(2):1535-8.

PMID:
23646677
13.

Three-Dimensional LiMnPO4┬ĚLi3V2(PO4)3/C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries.

Luo Y, Xu X, Zhang Y, Pi Y, Yan M, Wei Q, Tian X, Mai L.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17527-34. doi: 10.1021/acsami.5b05451. Epub 2015 Aug 3.

PMID:
26196544
14.

Rapid Polyol-Assisted Microwave Synthesis of Nanocrystalline LiFePO4/C Cathode for Lithium-Ion Batteries.

Paul BJ, Gim J, Baek S, Kang J, Song J, Kim S, Kim J.

J Nanosci Nanotechnol. 2015 Aug;15(8):6168-71.

PMID:
26369219
15.

A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process.

Li S, Liu X, Mi R, Liu H, Li Y, Lau WM, Mei J.

ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9449-57. doi: 10.1021/am501762x. Epub 2014 Jun 6.

PMID:
24858212
16.

Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.

Ma R, Shao L, Wu K, Shui M, Wang D, Pan J, Long N, Ren Y, Shu J.

ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8615-27. doi: 10.1021/am402132u. Epub 2013 Aug 21.

PMID:
23927499
17.

Preparation and characterization of chlorine doped Li3V2(PO4)3 as high rate cathode active material for lithium secondary batteries.

Lee SN, Kim HS, An JY, Amaresh S, Lee YG, Nam KW, Lee YS.

J Nanosci Nanotechnol. 2014 Oct;14(10):7516-20.

PMID:
25942818
18.

Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries.

Wei W, Chen D, Wang R, Guo L.

Nanotechnology. 2012 Nov 30;23(47):475401. doi: 10.1088/0957-4484/23/47/475401. Epub 2012 Nov 1.

PMID:
23117189
19.

Structural and Electrical Properties of Lithium-Ion Rechargeable Battery Using the LiFePO4/Carbon Cathode Material.

Kim YS, Jeoung TH, Nam SP, Lee SH, Kim JC, Lee SG.

J Nanosci Nanotechnol. 2015 Mar;15(3):2436-40.

PMID:
26413683
20.

Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries.

Sun P, Zhao X, Chen R, Chen T, Ma L, Fan Q, Lu H, Hu Y, Tie Z, Jin Z, Xu Q, Liu J.

Nanoscale. 2016 Mar 31;8(14):7408-15. doi: 10.1039/c5nr08832a.

PMID:
26990080
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk