Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Divergent aquifer biogeochemical systems converge on similar and unexpected Cr(VI) reduction products.

Beller HR, Yang L, Varadharajan C, Han R, Lim HC, Karaoz U, Molins S, Marcus MA, Brodie EL, Steefel CI, Nico PS.

Environ Sci Technol. 2014 Sep 16;48(18):10699-706. doi: 10.1021/es5016982. Epub 2014 Aug 13.

PMID:
25084058
2.

Characterization of Chromium Bioremediation Products in Flow-Through Column Sediments Using Micro-X-ray Fluorescence and X-ray Absorption Spectroscopy.

Varadharajan C, Han R, Beller HR, Yang L, Marcus MA, Michel M, Nico PS.

J Environ Qual. 2015 May;44(3):729-38. doi: 10.2134/jeq2014.08.0329.

PMID:
26024254
3.

Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.

Brookshaw DR, Coker VS, Lloyd JR, Vaughan DJ, Pattrick RA.

Environ Sci Technol. 2014 Oct 7;48(19):11337-42. doi: 10.1021/es5031849. Epub 2014 Sep 18.

PMID:
25196156
4.

Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.

Kantar C, Ari C, Keskin S.

Water Res. 2015 Jun 1;76:66-75. doi: 10.1016/j.watres.2015.02.058. Epub 2015 Mar 7.

PMID:
25792435
5.

Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite.

Kiser JR, Manning BA.

J Hazard Mater. 2010 Feb 15;174(1-3):167-74. doi: 10.1016/j.jhazmat.2009.09.032. Epub 2009 Sep 15.

PMID:
19796874
6.

Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments.

Kantar C, Ari C, Keskin S, Dogaroglu ZG, Karadeniz A, Alten A.

J Contam Hydrol. 2015 Mar;174:28-38. doi: 10.1016/j.jconhyd.2015.01.001. Epub 2015 Jan 22.

PMID:
25644191
7.

A XAFS study of plain and composite iron(III) and chromium(III) hydroxides.

Papassiopi N, Pinakidou F, Katsikini M, Antipas GS, Christou C, Xenidis A, Paloura EC.

Chemosphere. 2014 Sep;111:169-76. doi: 10.1016/j.chemosphere.2014.03.059. Epub 2014 Apr 22.

PMID:
24997915
8.

Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

Butler EC, Chen L, Hansel CM, Krumholz LR, Elwood Madden AS, Lan Y.

Environ Sci Process Impacts. 2015 Nov;17(11):1930-40. doi: 10.1039/c5em00286a.

PMID:
26452013
9.

Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis.

Hori M, Shozugawa K, Matsuo M.

J Hazard Mater. 2015 Mar 21;285:140-7. doi: 10.1016/j.jhazmat.2014.11.047. Epub 2014 Dec 5.

PMID:
25497027
10.

Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons.

Yang JE, Kim JS, Ok YS, Yoo KR.

Water Sci Technol. 2007;55(1-2):197-202.

PMID:
17305140
11.

Physiological and transcriptional studies of Cr(VI) reduction under aerobic and denitrifying conditions by an aquifer-derived pseudomonad.

Han R, Geller JT, Yang L, Brodie EL, Chakraborty R, Larsen JT, Beller HR.

Environ Sci Technol. 2010 Oct 1;44(19):7491-7. doi: 10.1021/es101152r.

PMID:
20822129
12.

Highly efficient detoxification of Cr(VI) by chitosan-Fe(III) complex: process and mechanism studies.

Shen C, Chen H, Wu S, Wen Y, Li L, Jiang Z, Li M, Liu W.

J Hazard Mater. 2013 Jan 15;244-245:689-97. doi: 10.1016/j.jhazmat.2012.10.061. Epub 2012 Nov 3.

PMID:
23200119
13.

Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.

Gheju M, Iovi A, Balcu I.

J Hazard Mater. 2008 May 1;153(1-2):655-62. Epub 2007 Sep 6.

PMID:
17933460
14.
15.

Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron.

Manning BA, Kiser JR, Kwon H, Kanel SR.

Environ Sci Technol. 2007 Jan 15;41(2):586-92.

PMID:
17310726
16.

Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.

Jung Y, Choi J, Lee W.

Chemosphere. 2007 Aug;68(10):1968-75. Epub 2007 Apr 2.

PMID:
17400277
17.

Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids.

Hwang I, Batchelor B, Schlautman MA, Wang R.

J Hazard Mater. 2002 May 27;92(2):143-59.

PMID:
11992700
18.

Chromium isotope fractionation during reduction of Cr(VI) under saturated flow conditions.

Jamieson-Hanes JH, Gibson BD, Lindsay MB, Kim Y, Ptacek CJ, Blowes DW.

Environ Sci Technol. 2012 Jun 19;46(12):6783-9. doi: 10.1021/es2042383. Epub 2012 Jun 7.

PMID:
22676583
19.

Hexavalent chromium reduction by Pannonibacter phragmitetus BB isolated from soil under chromium-containing slag heap.

Chai LY, Huang SH, Yang ZH, Peng B, Huang Y, Chen YH.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009 May;44(6):615-22. doi: 10.1080/10934520902784690.

PMID:
19337925
20.

Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles.

Wu P, Li S, Ju L, Zhu N, Wu J, Li P, Dang Z.

J Hazard Mater. 2012 Jun 15;219-220:283-8. doi: 10.1016/j.jhazmat.2012.04.008. Epub 2012 Apr 10.

PMID:
22521796
Items per page

Supplemental Content

Write to the Help Desk