Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Translational pharmacokinetic-pharmacodynamic modeling for an orally available novel inhibitor of anaplastic lymphoma kinase and c-Ros oncogene 1.

Yamazaki S, Lam JL, Zou HY, Wang H, Smeal T, Vicini P.

J Pharmacol Exp Ther. 2014 Oct;351(1):67-76. doi: 10.1124/jpet.114.217141. Epub 2014 Jul 29.

2.

Mechanistic understanding of translational pharmacokinetic-pharmacodynamic relationships in nonclinical tumor models: a case study of orally available novel inhibitors of anaplastic lymphoma kinase.

Yamazaki S, Lam JL, Zou HY, Wang H, Smeal T, Vicini P.

Drug Metab Dispos. 2015 Jan;43(1):54-62. doi: 10.1124/dmd.114.061143. Epub 2014 Oct 27.

3.

Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations.

Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, Cui JJ, Deal JG, Deng YL, Dinh D, Engstrom LD, He M, Hoffman J, Hoffman RL, Huang Q, Kania RS, Kath JC, Lam H, Lam JL, Le PT, Lingardo L, Liu W, McTigue M, Palmer CL, Sach NW, Smeal T, Smith GL, Stewart AE, Timofeevski S, Zhu H, Zhu J, Zou HY, Edwards MP.

J Med Chem. 2014 Jun 12;57(11):4720-44. doi: 10.1021/jm500261q. Epub 2014 Jun 3.

PMID:
24819116
4.

Pharmacokinetic/pharmacodynamic modeling of crizotinib for anaplastic lymphoma kinase inhibition and antitumor efficacy in human tumor xenograft mouse models.

Yamazaki S, Vicini P, Shen Z, Zou HY, Lee J, Li Q, Christensen JG, Smith BJ, Shetty B.

J Pharmacol Exp Ther. 2012 Mar;340(3):549-57. doi: 10.1124/jpet.111.188870. Epub 2011 Nov 30.

5.

The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice.

Mori M, Ueno Y, Konagai S, Fushiki H, Shimada I, Kondoh Y, Saito R, Mori K, Shindou N, Soga T, Sakagami H, Furutani T, Doihara H, Kudoh M, Kuromitsu S.

Mol Cancer Ther. 2014 Feb;13(2):329-40. doi: 10.1158/1535-7163.MCT-13-0395. Epub 2014 Jan 13.

6.
7.

CEP-28122, a highly potent and selective orally active inhibitor of anaplastic lymphoma kinase with antitumor activity in experimental models of human cancers.

Cheng M, Quail MR, Gingrich DE, Ott GR, Lu L, Wan W, Albom MS, Angeles TS, Aimone LD, Cristofani F, Machiorlatti R, Abele C, Ator MA, Dorsey BD, Inghirami G, Ruggeri BA.

Mol Cancer Ther. 2012 Mar;11(3):670-9. doi: 10.1158/1535-7163.MCT-11-0776. Epub 2011 Dec 27.

8.

CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant.

Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, Oikawa N, Tsukuda T, Ishii N, Aoki Y.

Cancer Cell. 2011 May 17;19(5):679-90. doi: 10.1016/j.ccr.2011.04.004.

9.

Role of ERK-BIM and STAT3-survivin signaling pathways in ALK inhibitor-induced apoptosis in EML4-ALK-positive lung cancer.

Takezawa K, Okamoto I, Nishio K, Jänne PA, Nakagawa K.

Clin Cancer Res. 2011 Apr 15;17(8):2140-8. doi: 10.1158/1078-0432.CCR-10-2798. Epub 2011 Mar 17.

10.

PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations.

Zou HY, Li Q, Engstrom LD, West M, Appleman V, Wong KA, McTigue M, Deng YL, Liu W, Brooun A, Timofeevski S, McDonnell SR, Jiang P, Falk MD, Lappin PB, Affolter T, Nichols T, Hu W, Lam J, Johnson TW, Smeal T, Charest A, Fantin VR.

Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3493-8. doi: 10.1073/pnas.1420785112. Epub 2015 Mar 2.

11.

The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models.

Normant E, Paez G, West KA, Lim AR, Slocum KL, Tunkey C, McDougall J, Wylie AA, Robison K, Caliri K, Palombella VJ, Fritz CC.

Oncogene. 2011 Jun 2;30(22):2581-6. doi: 10.1038/onc.2010.625. Epub 2011 Jan 24.

PMID:
21258415
12.

ALK inhibitor PF02341066 (crizotinib) increases sensitivity to radiation in non-small cell lung cancer expressing EML4-ALK.

Sun Y, Nowak KA, Zaorsky NG, Winchester CL, Dalal K, Giacalone NJ, Liu N, Werner-Wasik M, Wasik MA, Dicker AP, Lu B.

Mol Cancer Ther. 2013 May;12(5):696-704. doi: 10.1158/1535-7163.MCT-12-0868. Epub 2013 Feb 26.

13.

Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma.

Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR, Yamazaki S, Alton GR, Mroczkowski B, Los G.

Mol Cancer Ther. 2007 Dec;6(12 Pt 1):3314-22.

14.

Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer.

Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Jänne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, Iafrate AJ.

N Engl J Med. 2010 Oct 28;363(18):1693-703. doi: 10.1056/NEJMoa1006448. Erratum in: N Engl J Med. 2011 Feb 10;364(6):588.

15.

PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models.

Zou HY, Friboulet L, Kodack DP, Engstrom LD, Li Q, West M, Tang RW, Wang H, Tsaparikos K, Wang J, Timofeevski S, Katayama R, Dinh DM, Lam H, Lam JL, Yamazaki S, Hu W, Patel B, Bezwada D, Frias RL, Lifshits E, Mahmood S, Gainor JF, Affolter T, Lappin PB, Gukasyan H, Lee N, Deng S, Jain RK, Johnson TW, Shaw AT, Fantin VR, Smeal T.

Cancer Cell. 2015 Jul 13;28(1):70-81. doi: 10.1016/j.ccell.2015.05.010. Epub 2015 Jul 2.

PMID:
26144315
16.

Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer.

Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, Sakamoto H.

Mol Cancer Ther. 2014 Dec;13(12):2910-8. doi: 10.1158/1535-7163.MCT-14-0274. Epub 2014 Oct 27.

17.

Assessing the impact of HER2 status on the antitumor activity of an HSP90 inhibitor in human tumor xenograft mice using pharmacokinetic-pharmacodynamic modeling.

Saitoh R, Nagayasu M, Shibahara N, Ono N, Suda A, Kato M, Ishigai M.

Drug Metab Pharmacokinet. 2014;29(2):185-91. Epub 2013 Oct 15.

18.

Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors.

Davare MA, Vellore NA, Wagner JP, Eide CA, Goodman JR, Drilon A, Deininger MW, O'Hare T, Druker BJ.

Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):E5381-90. doi: 10.1073/pnas.1515281112. Epub 2015 Sep 8.

19.

Combined effect of ALK and MEK inhibitors in EML4-ALK-positive non-small-cell lung cancer cells.

Tanizaki J, Okamoto I, Takezawa K, Sakai K, Azuma K, Kuwata K, Yamaguchi H, Hatashita E, Nishio K, Janne PA, Nakagawa K.

Br J Cancer. 2012 Feb 14;106(4):763-7. doi: 10.1038/bjc.2011.586. Epub 2012 Jan 12.

20.

Pharmacokinetic-pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available heat shock protein 90 inhibitor in a human tumor xenograft mouse model.

Yamazaki S, Nguyen L, Vekich S, Shen Z, Yin MJ, Mehta PP, Kung PP, Vicini P.

J Pharmacol Exp Ther. 2011 Sep;338(3):964-73. doi: 10.1124/jpet.111.181339. Epub 2011 Jun 16.

Items per page

Supplemental Content

Write to the Help Desk