Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 136

Similar articles for PubMed (Select 25062858)

1.

Cognitive deficits in transgenic and knock-in HTT mice parallel those in Huntington's disease.

Farrar AM, Murphy CA, Paterson NE, Oakeshott S, He D, Alosio W, McConnell K, Menalled LB, Ramboz S, Park LC, Howland D, Brunner D.

J Huntingtons Dis. 2014;3(2):145-58. doi: 10.3233/JHD-130061.

PMID:
25062858
2.

The rat's not for turning: Dissociating the psychological components of cognitive inflexibility.

Nilsson SR, Alsiö J, Somerville EM, Clifton PG.

Neurosci Biobehav Rev. 2015 Jun 22. pii: S0149-7634(15)00169-4. doi: 10.1016/j.neubiorev.2015.06.015. [Epub ahead of print] Review.

PMID:
26112128
3.

Cortical efferents lacking mutant huntingtin improve striatal neuronal activity and behavior in a conditional mouse model of Huntington's disease.

Estrada-Sánchez AM, Burroughs CL, Cavaliere S, Barton SJ, Chen S, Yang XW, Rebec GV.

J Neurosci. 2015 Mar 11;35(10):4440-51. doi: 10.1523/JNEUROSCI.2812-14.2015.

PMID:
25762686
4.
5.

Interaction without intent: the shape of the social world in Huntington's disease.

Eddy CM, Rickards HE.

Soc Cogn Affect Neurosci. 2015 Feb 12. pii: nsv012. [Epub ahead of print]

PMID:
25680992
6.

A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits.

Aharony I, Ehrnhoefer DE, Shruster A, Qiu X, Franciosi S, Hayden MR, Offen D.

Hum Mol Genet. 2015 May 1;24(9):2604-14. doi: 10.1093/hmg/ddv023. Epub 2015 Jan 23.

PMID:
25616965
7.

Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington's disease.

Skillings EA, Wood NI, Morton AJ.

Brain Behav. 2014 Sep;4(5):675-86. doi: 10.1002/brb3.235. Epub 2014 Jul 17.

8.

Individual variability in visual discrimination and reversal learning performance in common marmosets.

Takemoto A, Miwa M, Koba R, Yamaguchi C, Suzuki H, Nakamura K.

Neurosci Res. 2015 Apr;93:136-43. doi: 10.1016/j.neures.2014.10.001. Epub 2014 Oct 12.

PMID:
25315397
9.

Application of neurophysiological biomarkers for Huntington's disease: evaluating a phosphodiesterase 9A inhibitor.

Nagy D, Tingley FD 3rd, Stoiljkovic M, Hajós M.

Exp Neurol. 2015 Jan;263:122-31. doi: 10.1016/j.expneurol.2014.10.001. Epub 2014 Oct 12.

PMID:
25315303
10.

Re-evaluating the PCP challenge as a pre-clinical model of impaired cognitive flexibility in schizophrenia.

Fellini L, Kumar G, Gibbs S, Steckler T, Talpos J.

Eur Neuropsychopharmacol. 2014 Nov;24(11):1836-49. doi: 10.1016/j.euroneuro.2014.08.012. Epub 2014 Aug 27.

PMID:
25300235
11.

Touchscreen-based cognitive tasks reveal age-related impairment in a primate aging model, the grey mouse lemur (Microcebus murinus).

Joly M, Ammersdörfer S, Schmidtke D, Zimmermann E.

PLoS One. 2014 Oct 9;9(10):e109393. doi: 10.1371/journal.pone.0109393. eCollection 2014.

12.

Effects of deletion of mutant huntingtin in steroidogenic factor 1 neurons on the psychiatric and metabolic phenotype in the BACHD mouse model of Huntington disease.

Baldo B, Cheong RY, Petersén Å.

PLoS One. 2014 Oct 1;9(10):e107691. doi: 10.1371/journal.pone.0107691. eCollection 2014.

13.

Animal models of Huntington's disease for translation to the clinic: best practices.

Menalled L, Brunner D.

Mov Disord. 2014 Sep 15;29(11):1375-90. doi: 10.1002/mds.26006. Review.

PMID:
25216369
14.

Neurotrophin receptor p75(NTR) mediates Huntington's disease-associated synaptic and memory dysfunction.

Brito V, Giralt A, Enriquez-Barreto L, Puigdellívol M, Suelves N, Zamora-Moratalla A, Ballesteros JJ, Martín ED, Dominguez-Iturza N, Morales M, Alberch J, Ginés S.

J Clin Invest. 2014 Oct;124(10):4411-28. doi: 10.1172/JCI74809. Epub 2014 Sep 2.

15.

The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease.

Doria JG, de Souza JM, Andrade JN, Rodrigues HA, Guimaraes IM, Carvalho TG, Guatimosim C, Dobransky T, Ribeiro FM.

Neurobiol Dis. 2015 Jan;73:163-73. doi: 10.1016/j.nbd.2014.08.021. Epub 2014 Aug 24.

PMID:
25160573
16.

Reduced motivation in the BACHD rat model of Huntington disease is dependent on the choice of food deprivation strategy.

Jansson EK, Clemens LE, Riess O, Nguyen HP.

PLoS One. 2014 Aug 21;9(8):e105662. doi: 10.1371/journal.pone.0105662. eCollection 2014.

17.

Motor and cognitive deficits in aged tau knockout mice in two background strains.

Lei P, Ayton S, Moon S, Zhang Q, Volitakis I, Finkelstein DI, Bush AI.

Mol Neurodegener. 2014 Aug 14;9:29. doi: 10.1186/1750-1326-9-29.

18.

Cognitive deficits predict poorer functional capacity in Huntington's disease: but what is being measured?

Eddy CM, Rickards HE.

Neuropsychology. 2015 Mar;29(2):268-73. doi: 10.1037/neu0000134. Epub 2014 Aug 11.

PMID:
25110931
19.

Ethological endophenotypes are altered by elevated stress hormone levels in both Huntington's disease and wildtype mice.

Mo C, Renoir T, Hannan AJ.

Behav Brain Res. 2014 Nov 1;274:118-27. doi: 10.1016/j.bbr.2014.07.044. Epub 2014 Aug 4.

PMID:
25101541
20.

Effects of chronic stress on the onset and progression of Huntington's disease in transgenic mice.

Mo C, Renoir T, Hannan AJ.

Neurobiol Dis. 2014 Nov;71:81-94. doi: 10.1016/j.nbd.2014.07.008. Epub 2014 Aug 1.

PMID:
25088714
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk