Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

Similar articles for PubMed (Select 25058645)

1.

Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites.

Rodriguez S, Kirby J, Denby CM, Keasling JD.

Nat Protoc. 2014 Aug;9(8):1980-96. doi: 10.1038/nprot.2014.132. Epub 2014 Jul 24.

PMID:
25058645
2.

Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.

Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J.

Biotechnol Bioeng. 2010 May 1;106(1):86-96. doi: 10.1002/bit.22668.

PMID:
20091767
3.

Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis.

Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J.

Biotechnol Bioeng. 2008 Feb 15;99(3):666-77.

PMID:
17705244
4.

Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.

Paradise EM, Kirby J, Chan R, Keasling JD.

Biotechnol Bioeng. 2008 Jun 1;100(2):371-8. doi: 10.1002/bit.21766.

PMID:
18175359
5.

Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode.

Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V.

Metab Eng. 2012 Mar;14(2):91-103. doi: 10.1016/j.ymben.2012.01.007. Epub 2012 Feb 8.

PMID:
22330799
6.

Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.

Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD.

BMC Biotechnol. 2008 Nov 4;8:83. doi: 10.1186/1472-6750-8-83.

7.

Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae.

Lindahl AL, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, Brodelius PE.

Biotechnol Lett. 2006 Apr;28(8):571-80.

PMID:
16614895
8.

Metabolic engineering of sesquiterpene metabolism in yeast.

Takahashi S, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J.

Biotechnol Bioeng. 2007 May 1;97(1):170-81.

9.

Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD.

Nature. 2006 Apr 13;440(7086):940-3.

PMID:
16612385
10.

Combination of ERG9 Repression and Enzyme Fusion Technology for Improved Production of Amorphadiene in Saccharomyces cerevisiae.

Baadhe RR, Mekala NK, Parcha SR, Prameela Devi Y.

J Anal Methods Chem. 2013;2013:140469. doi: 10.1155/2013/140469. Epub 2013 Oct 27.

11.

Metabolic engineering to produce sesquiterpenes in yeast.

Jackson BE, Hart-Wells EA, Matsuda SP.

Org Lett. 2003 May 15;5(10):1629-32.

PMID:
12735738
12.

Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes.

Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen UH.

Appl Environ Microbiol. 2011 Feb;77(3):1033-40. doi: 10.1128/AEM.01361-10. Epub 2010 Dec 10.

13.

Detection of farnesyl diphosphate accumulation in yeast ERG9 mutants.

Song L.

Anal Biochem. 2003 Jun 15;317(2):180-5.

PMID:
12758256
14.

Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin.

Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ.

Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):E111-8. doi: 10.1073/pnas.1110740109. Epub 2012 Jan 12.

15.

Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae.

Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J.

Microb Cell Fact. 2012 Aug 31;11:117. doi: 10.1186/1475-2859-11-117.

16.

The improvement of amorpha-4,11-diene production by a yeast-conform variant.

Kong JQ, Wang W, Wang LN, Zheng XD, Cheng KD, Zhu P.

J Appl Microbiol. 2009 Mar;106(3):941-51. doi: 10.1111/j.1365-2672.2008.04063.x. Epub 2009 Jan 21. Erratum in: J Appl Microbiol. 2009 Aug;107(2):706. Jiang-Qiang, K [corrected to Kong, J-Q]; Wei, W [corrected to Wang, W]; Li-Na, W [corrected to Wang, L-N]; Xiao-Dong, Z [corrected to Zheng, X-D]; Ke-Di, C [corrected to Cheng, K-D]; Ping, Z [corrected to Zhu, P].

PMID:
19191957
17.

Engineering the lactococcal mevalonate pathway for increased sesquiterpene production.

Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Noor NM, Rahim RA.

FEMS Microbiol Lett. 2014 Jun;355(2):177-84. doi: 10.1111/1574-6968.12469. Epub 2014 Jun 4.

18.

Monoterpenoid biosynthesis in Saccharomyces cerevisiae.

Oswald M, Fischer M, Dirninger N, Karst F.

FEMS Yeast Res. 2007 May;7(3):413-21. Epub 2006 Nov 9.

19.

Production of artemisinin by genetically-modified microbes.

Zeng Q, Qiu F, Yuan L.

Biotechnol Lett. 2008 Apr;30(4):581-92. Epub 2007 Nov 16. Review.

PMID:
18008167
20.

[Increase of copy number of HMG-CoA reductase and FPP synthase genes improves the amorpha4,11-diene production in engineered yeast].

Kong JQ, Cheng KD, Wang LN, Zheng XD, Dai JG, Zhu P, Wang W.

Yao Xue Xue Bao. 2007 Dec;42(12):1314-9. Chinese.

PMID:
18338647
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk