Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.

Lin YG, Hsu YK, Chen YC, Lee BW, Hwang JS, Chen LC, Chen KH.

ChemSusChem. 2014 Sep;7(9):2748-54. doi: 10.1002/cssc.201402025. Epub 2014 Jul 8.

PMID:
25044962
2.

Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.

Parmar KP, Kang HJ, Bist A, Dua P, Jang JS, Lee JS.

ChemSusChem. 2012 Oct;5(10):1926-34. doi: 10.1002/cssc.201200254. Epub 2012 Aug 27.

PMID:
22927058
3.

Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.

Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y.

Nano Lett. 2011 Jul 13;11(7):3026-33. doi: 10.1021/nl201766h. Epub 2011 Jun 28.

PMID:
21710974
4.

Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting.

Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y.

Nano Lett. 2009 Jun;9(6):2331-6. doi: 10.1021/nl900772q.

PMID:
19449878
5.

Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.

Miao J, Yang HB, Khoo SY, Liu B.

Nanoscale. 2013 Nov 21;5(22):11118-24. doi: 10.1039/c3nr03425a. Epub 2013 Sep 27.

PMID:
24077389
6.

Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.

Yang J, Walczak K, Anzenberg E, Toma FM, Yuan G, Beeman J, Schwartzberg A, Lin Y, Hettick M, Javey A, Ager JW, Yano J, Frei H, Sharp ID.

J Am Chem Soc. 2014 Apr 30;136(17):6191-4. doi: 10.1021/ja501513t. Epub 2014 Apr 22.

PMID:
24720554
7.

Mo-doped BiVO4 photoanodes synthesized by reactive sputtering.

Chen L, Toma FM, Cooper JK, Lyon A, Lin Y, Sharp ID, Ager JW.

ChemSusChem. 2015 Mar;8(6):1066-71. doi: 10.1002/cssc.201402984. Epub 2015 Feb 23.

PMID:
25705871
8.

Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.

Hahn NT, Ye H, Flaherty DW, Bard AJ, Mullins CB.

ACS Nano. 2010 Apr 27;4(4):1977-86. doi: 10.1021/nn100032y.

PMID:
20361756
9.

Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.

Su F, Wang T, Lv R, Zhang J, Zhang P, Lu J, Gong J.

Nanoscale. 2013 Oct 7;5(19):9001-9. doi: 10.1039/c3nr02766j. Epub 2013 Jul 18.

PMID:
23864159
10.

Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.

Shen S, Zhou J, Dong CL, Hu Y, Tseng EN, Guo P, Guo L, Mao SS.

Sci Rep. 2014 Oct 15;4:6627. doi: 10.1038/srep06627.

11.

Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.

Wang G, Xiao X, Li W, Lin Z, Zhao Z, Chen C, Wang C, Li Y, Huang X, Miao L, Jiang C, Huang Y, Duan X.

Nano Lett. 2015 Jul 8;15(7):4692-8. doi: 10.1021/acs.nanolett.5b01547. Epub 2015 Jun 12.

PMID:
26052643
12.

Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion.

Xu M, Da P, Wu H, Zhao D, Zheng G.

Nano Lett. 2012 Mar 14;12(3):1503-8. doi: 10.1021/nl2042968. Epub 2012 Feb 28.

PMID:
22364360
13.

Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles.

Wei Y, Ke L, Kong J, Liu H, Jiao Z, Lu X, Du H, Sun XW.

Nanotechnology. 2012 Jun 15;23(23):235401. doi: 10.1088/0957-4484/23/23/235401.

PMID:
22609803
14.

Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy.

He W, Yang Y, Wang L, Yang J, Xiang X, Yan D, Li F.

ChemSusChem. 2015 May 11;8(9):1568-76. doi: 10.1002/cssc.201403294. Epub 2015 Feb 25.

PMID:
25711390
15.

The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation.

Barroso M, Cowan AJ, Pendlebury SR, Grätzel M, Klug DR, Durrant JR.

J Am Chem Soc. 2011 Sep 28;133(38):14868-71. doi: 10.1021/ja205325v. Epub 2011 Sep 7.

PMID:
21861508
16.

Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.

Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ.

Small. 2009 Jan;5(1):104-11. doi: 10.1002/smll.200800902.

PMID:
19040214
17.

Formation of a CdO layer on CdS/ZnO nanorod arrays to enhance their photoelectrochemical performance.

Van TK, Pham LQ, Kim do Y, Zheng JY, Kim D, Pawar AU, Kang YS.

ChemSusChem. 2014 Dec;7(12):3505-12. doi: 10.1002/cssc.201402365. Epub 2014 Oct 16. Erratum in: ChemSusChem. 2014 Dec;7(12):3195.

PMID:
25324138
18.

Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability.

Hsu MH, Chang CJ.

J Hazard Mater. 2014 Aug 15;278:444-53. doi: 10.1016/j.jhazmat.2014.06.038. Epub 2014 Jun 23.

PMID:
24997260
19.

Solution-processed, antimony-doped tin oxide colloid films enable high-performance TiO2 photoanodes for water splitting.

Peng Q, Kalanyan B, Hoertz PG, Miller A, Kim do H, Hanson K, Alibabaei L, Liu J, Meyer TJ, Parsons GN, Glass JT.

Nano Lett. 2013 Apr 10;13(4):1481-8. doi: 10.1021/nl3045525. Epub 2013 Mar 28.

PMID:
23537229
20.

Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting.

Lin YG, Hsu YK, Chen YC, Chen LC, Chen SY, Chen KH.

Nanoscale. 2012 Oct 21;4(20):6515-9.

PMID:
22965114
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk