Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Analysis of key genes and pathways involved in acute lung injury in a mouse model.

Han QH, Han N, Liu YZ, Jin QH, Lu QY, Li ZC.

Genet Mol Res. 2014 Jun 18;13(2):4591-8. doi: 10.4238/2014.June.18.1.

2.

Network clusters analysis based on protein-protein interaction network constructed in phosgene-induced acute lung injury.

Liu Z, Gao F, Hou L, Qian Y, Tian R.

Lung. 2013 Oct;191(5):545-51. doi: 10.1007/s00408-013-9493-1. Epub 2013 Aug 21.

PMID:
23963411
3.

D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.

Davidson ME, Kerepesi LA, Soto A, Chan VT.

Arch Toxicol. 2009 Aug;83(8):747-62. doi: 10.1007/s00204-009-0405-3. Epub 2009 Feb 11.

PMID:
19212759
4.

Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling.

Aggarwal NR, D'Alessio FR, Tsushima K, Sidhaye VK, Cheadle C, Grigoryev DN, Barnes KC, King LS.

Physiol Genomics. 2010 Apr 1;41(2):109-19. doi: 10.1152/physiolgenomics.00131.2009. Epub 2009 Dec 22.

5.

Analysis of mechanical ventilation and lipopolysaccharide‑induced acute lung injury using DNA microarray analysis.

Chen Y, Zhou X, Rong L.

Mol Med Rep. 2015 Jun;11(6):4239-45. doi: 10.3892/mmr.2015.3335. Epub 2015 Feb 11.

6.

DNA microarray-based screening of differentially expressed genes related to acute lung injury and functional analysis.

Chen Y, Shi JX, Pan XF, Feng J, Zhao H.

Eur Rev Med Pharmacol Sci. 2013 Apr;17(8):1044-50.

7.

Microarray meta-analysis identifies acute lung injury biomarkers in donor lungs that predict development of primary graft failure in recipients.

Hu P, Wang X, Haitsma JJ, Furmli S, Masoom H, Liu M, Imai Y, Slutsky AS, Beyene J, Greenwood CM, dos Santos C.

PLoS One. 2012;7(10):e45506. doi: 10.1371/journal.pone.0045506. Epub 2012 Oct 12.

8.

Dynamics of hepatic gene expression profile in a rat cecal ligation and puncture model.

Yang Q, Mattick JS, Orman MA, Nguyen TT, Ierapetritou MG, Berthiaume F, Androulakis IP.

J Surg Res. 2012 Aug;176(2):583-600. doi: 10.1016/j.jss.2011.11.1031. Epub 2011 Dec 15.

9.

Analysis of the transcriptome in hyperoxic lung injury and sex-specific alterations in gene expression.

Lingappan K, Srinivasan C, Jiang W, Wang L, Couroucli XI, Moorthy B.

PLoS One. 2014 Jul 8;9(7):e101581. doi: 10.1371/journal.pone.0101581. eCollection 2014.

10.

A critical role for muscle ring finger-1 in acute lung injury-associated skeletal muscle wasting.

Files DC, D'Alessio FR, Johnston LF, Kesari P, Aggarwal NR, Garibaldi BT, Mock JR, Simmers JL, DeGorordo A, Murdoch J, Willis MS, Patterson C, Tankersley CG, Messi ML, Liu C, Delbono O, Furlow JD, Bodine SC, Cohn RD, King LS, Crow MT.

Am J Respir Crit Care Med. 2012 Apr 15;185(8):825-34. doi: 10.1164/rccm.201106-1150OC. Epub 2012 Feb 3.

11.

Functional genomic assessment of phosgene-induced acute lung injury in mice.

Leikauf GD, Concel VJ, Bein K, Liu P, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA Jr, Upadhyay S, Cario C, Di YP, Vuga LJ, Kostem E, Eskin E, You M, Kaminski N, Prows DR, Knoell DL, Fabisiak JP.

Am J Respir Cell Mol Biol. 2013 Sep;49(3):368-83. doi: 10.1165/rcmb.2012-0337OC.

12.

Silencing of fas, fas-associated via death domain, or caspase 3 differentially affects lung inflammation, apoptosis, and development of trauma-induced septic acute lung injury.

Messer MP, Kellermann P, Weber SJ, Hohmann C, Denk S, Klohs B, Schultze A, Braumüller S, Huber-Lang MS, Perl M.

Shock. 2013 Jan;39(1):19-27. doi: 10.1097/SHK.0b013e318277d856.

PMID:
23247118
13.

Sinomenine protects against lipopolysaccharide-induced acute lung injury in mice via adenosine A(2A) receptor signaling.

Li J, Zhao L, He X, Zeng YJ, Dai SS.

PLoS One. 2013;8(3):e59257. doi: 10.1371/journal.pone.0059257. Epub 2013 Mar 15.

14.

The ubiquitin-CXCR4 axis plays an important role in acute lung infection-enhanced lung tumor metastasis.

Yan L, Cai Q, Xu Y.

Clin Cancer Res. 2013 Sep 1;19(17):4706-16. doi: 10.1158/1078-0432.CCR-13-0011. Epub 2013 May 20.

15.

Plasma glutamate-modulated interaction of A2AR and mGluR5 on BMDCs aggravates traumatic brain injury-induced acute lung injury.

Dai SS, Wang H, Yang N, An JH, Li W, Ning YL, Zhu PF, Chen JF, Zhou YG.

J Exp Med. 2013 Apr 8;210(4):839-51. doi: 10.1084/jem.20122196. Epub 2013 Mar 11.

16.

Analysis of key genes and pathways associated with colorectal cancer with microarray technology.

Liu YJ, Zhang S, Hou K, Li YT, Liu Z, Ren HL, Luo D, Li SH.

Asian Pac J Cancer Prev. 2013;14(3):1819-23.

18.

Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model.

Lovegrove FE, Gharib SA, Peña-Castillo L, Patel SN, Ruzinski JT, Hughes TR, Liles WC, Kain KC.

PLoS Pathog. 2008 May 16;4(5):e1000068. doi: 10.1371/journal.ppat.1000068.

19.

Apoptotic and inflammatory signaling via Fas and tumor necrosis factor receptor I contribute to the development of chest trauma-induced septic acute lung injury.

Weckbach S, Hohmann C, Denk S, Kellermann P, Huber-Lang MS, Baumann B, Wirth T, Gebhard F, Bachem M, Perl M.

J Trauma Acute Care Surg. 2013 Mar;74(3):792-800. doi: 10.1097/TA.0b013e31827a3655.

PMID:
23425737
20.

microRNAs mediate oleic acid-induced acute lung injury in rats using an alternative injury mechanism.

Lee SM, Choi H, Yang G, Park KC, Jeong S, Hong S.

Mol Med Rep. 2014 Jul;10(1):292-300. doi: 10.3892/mmr.2014.2155. Epub 2014 Apr 15.

PMID:
24736893
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk