Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake.

Kubo K, Kojima H, Fukui M.

Syst Appl Microbiol. 2014 Oct;37(7):510-9. doi: 10.1016/j.syapm.2014.05.008. Epub 2014 Jun 11.

PMID:
25034383
2.
3.

Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes.

Sorokin DY, Abbas B, Tourova TP, Bumazhkin BK, Kolganova TV, Muyzer G.

Microbiology. 2014 Apr;160(Pt 4):723-32. doi: 10.1099/mic.0.075093-0. Epub 2014 Jan 30.

PMID:
24482193
4.

Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade.

Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R.

Environ Microbiol. 2010 Aug;12(8):2327-40. doi: 10.1111/j.1462-2920.2010.02275.x. Epub 2010 Jul 9.

PMID:
21966923
5.

Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments.

Ravenschlag K, Sahm K, Knoblauch C, Jørgensen BB, Amann R.

Appl Environ Microbiol. 2000 Aug;66(8):3592-602.

6.
7.

Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin.

Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML.

Appl Environ Microbiol. 2003 May;69(5):2765-72.

8.
10.

Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.

Gittel A, Mussmann M, Sass H, Cypionka H, Könneke M.

Environ Microbiol. 2008 Oct;10(10):2645-58. doi: 10.1111/j.1462-2920.2008.01686.x. Epub 2008 Jul 8.

PMID:
18627412
11.

Potential sulfur metabolisms and associated bacteria within anoxic surface sediment from saline meromictic Lake Kaiike (Japan).

Koizumi Y, Kojima H, Fukui M.

FEMS Microbiol Ecol. 2005 May 1;52(3):297-305. Epub 2004 Dec 22.

12.

Isolation and characterization of novel sulfate-reducing bacterium capable of anaerobic degradation of p-xylene.

Higashioka Y, Kojima H, Fukui M.

Microbes Environ. 2012;27(3):273-7. Epub 2012 Mar 23.

14.

High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria.

Klepac-Ceraj V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF.

Environ Microbiol. 2004 Jul;6(7):686-98.

PMID:
15186347
15.

Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan.

Kubo K, Knittel K, Amann R, Fukui M, Matsuura K.

Syst Appl Microbiol. 2011 Jun;34(4):293-302. doi: 10.1016/j.syapm.2010.12.002. Epub 2011 Feb 24.

PMID:
21353426
16.

Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation.

Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen BB.

Environ Microbiol. 2009 May;11(5):1278-91. doi: 10.1111/j.1462-2920.2008.01855.x. Epub 2009 Feb 10.

PMID:
19220398
17.

Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene.

Watanabe T, Kojima H, Takano Y, Fukui M.

Syst Appl Microbiol. 2013 Sep;36(6):436-43. doi: 10.1016/j.syapm.2013.04.009. Epub 2013 Jun 27.

PMID:
23810657
18.
19.

Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica.

Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA.

Appl Environ Microbiol. 2005 Oct;71(10):6353-9.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk