Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Periodic synchronization and chimera in conformist and contrarian oscillators.

Hong H.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062924. Epub 2014 Jun 30.

PMID:
25019868
2.

Traveling wave in a three-dimensional array of conformist and contrarian oscillators.

Hoang DT, Jo J, Hong H.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032135. Epub 2015 Mar 24.

PMID:
25871082
3.

Conformists and contrarians in a Kuramoto model with identical natural frequencies.

Hong H, Strogatz SH.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046202. Epub 2011 Oct 4.

PMID:
22181240
4.

Landau damping effects in the synchronization of conformist and contrarian oscillators.

Qiu T, Zhang Y, Liu J, Bi H, Boccaletti S, Liu Z, Guan S.

Sci Rep. 2015 Dec 14;5:18235. doi: 10.1038/srep18235.

5.

An efficient approach to suppress the negative role of contrarian oscillators in synchronization.

Zhang X, Ruan Z, Liu Z.

Chaos. 2013 Sep;23(3):033135. doi: 10.1063/1.4821426.

PMID:
24089971
6.
7.

Persistent fluctuations in synchronization rate in globally coupled oscillators with periodic external forcing.

Atsumi Y, Nakao H.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056207. Epub 2012 May 14.

PMID:
23004843
8.

Bifurcation study of phase oscillator systems with attractive and repulsive interaction.

Burylko O, Kazanovich Y, Borisyuk R.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):022911. Epub 2014 Aug 25.

PMID:
25215803
9.

Symmetry and symmetry breaking in a Kuramoto model induced on a Möbius strip.

Ren Q, Long Q, Zhao J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022811. Epub 2013 Feb 19.

PMID:
23496572
10.

Noise enhanced phase synchronization and coherence resonance in sets of chaotic oscillators with weak global coupling.

Kiss IZ, Zhai Y, Hudson JL, Zhou C, Kurths J.

Chaos. 2003 Mar;13(1):267-78.

PMID:
12675433
11.

Synchronization of genetic oscillators.

Zhou T, Zhang J, Yuan Z, Chen L.

Chaos. 2008 Sep;18(3):037126. doi: 10.1063/1.2978183.

PMID:
19045500
12.

Robustness of chimera states for coupled FitzHugh-Nagumo oscillators.

Omelchenko I, Provata A, Hizanidis J, Schöll E, Hövel P.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022917. Epub 2015 Feb 23.

PMID:
25768579
13.

Chimera states in time-varying complex networks.

Buscarino A, Frasca M, Gambuzza LV, Hövel P.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022817. Epub 2015 Feb 26.

PMID:
25768562
14.

Synchronization of Heterogeneous Oscillators by Noninvasive Time-Delayed Cross Coupling.

Jüngling T, Fischer I, Schöll E, Just W.

Phys Rev Lett. 2015 Nov 6;115(19):194101. doi: 10.1103/PhysRevLett.115.194101. Epub 2015 Nov 3.

PMID:
26588386
15.

Phase resetting of collective rhythm in ensembles of oscillators.

Levnajić Z, Pikovsky A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 2):056202. Epub 2010 Nov 3.

PMID:
21230558
16.

Amplitude-phase coupling drives chimera states in globally coupled laser networks.

Böhm F, Zakharova A, Schöll E, Lüdge K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):040901. Epub 2015 Apr 22. Erratum in: Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6-2):069905.

PMID:
25974428
17.

Cross-frequency synchronization of oscillators with time-delayed coupling.

Klinshov VV, Shchapin DS, Nekorkin VI.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042923. Epub 2014 Oct 28.

PMID:
25375583
18.

Network approach to the pinning control of drift-wave turbulence.

Liu P, Deng Z, Yang L, Zhan M, Wang X.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062918. Epub 2014 Jun 18.

PMID:
25019862
19.

Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions.

Maistrenko Y, Penkovsky B, Rosenblum M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):060901. Epub 2014 Jun 9.

PMID:
25019710
20.

Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model.

Freitas C, Macau E, Pikovsky A.

Chaos. 2015 Apr;25(4):043119. doi: 10.1063/1.4919246.

PMID:
25933667
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk