Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Genomics and Proteomics Provide New Insight into the Commensal and Pathogenic Lifestyles of Bovine- and Human-Associated Staphylococcus epidermidis Strains.

Savijoki K, Iivanainen A, Siljamäki P, Laine PK, Paulin L, Karonen T, Pyörälä S, Kankainen M, Nyman TA, Salomäki T, Koskinen P, Holm L, Simojoki H, Taponen S, Sukura A, Kalkkinen N, Auvinen P, Varmanen P.

J Proteome Res. 2014 Jul 18. [Epub ahead of print]

PMID:
25014494
2.

Comparative exoprotein profiling of different Staphylococcus epidermidis strains reveals potential link between nonclassical protein export and virulence.

Siljamäki P, Varmanen P, Kankainen M, Sukura A, Savijoki K, Nyman TA.

J Proteome Res. 2014 Jul 3;13(7):3249-61. doi: 10.1021/pr500075j. Epub 2014 Jun 2.

PMID:
24840314
3.

Comparative proteome profiling of bovine and human Staphylococcus epidermidis strains for screening specifically expressed virulence and adaptation proteins.

Siljamäki P, Varmanen P, Kankainen M, Pyörälä S, Karonen T, Iivanainen A, Auvinen P, Paulin L, Laine PK, Taponen S, Simojoki H, Sukura A, Nyman TA, Savijoki K.

Proteomics. 2014 Aug;14(16):1890-4. doi: 10.1002/pmic.201300275. Epub 2014 Jul 10.

PMID:
24909406
4.

Comparative analysis of Staphylococcus epidermidis strains utilizing quantitative and cell surface shaving proteomics.

Solis N, Cain JA, Cordwell SJ.

J Proteomics. 2016 Jan 1;130:190-9. doi: 10.1016/j.jprot.2015.09.011. Epub 2015 Sep 12.

PMID:
26370163
5.

Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228.

Wei W, Cao Z, Zhu YL, Wang X, Ding G, Xu H, Jia P, Qu D, Danchin A, Li Y.

BMC Genomics. 2006 May 10;7:112.

6.

Molecular correlates of host specialization in Staphylococcus aureus.

Herron-Olson L, Fitzgerald JR, Musser JM, Kapur V.

PLoS One. 2007 Oct 31;2(10):e1120.

7.

Comparative proteomic analysis between the invasive and commensal strains of Staphylococcus epidermidis.

Yang XM, Li N, Chen JM, Ou YZ, Jin H, Lu HJ, Zhu YL, Qin ZQ, Qu D, Yang PY.

FEMS Microbiol Lett. 2006 Aug;261(1):32-40.

8.

Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential.

Gutiérrez D, Martínez B, Rodríguez A, García P.

BMC Genomics. 2012 Jun 8;13:228. doi: 10.1186/1471-2164-13-228.

9.

Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus.

Kim Y, Atalla H, Mallard B, Robert C, Karrow N.

BMC Vet Res. 2011 Sep 1;7:51. doi: 10.1186/1746-6148-7-51.

10.

Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray.

Sung JM, Lloyd DH, Lindsay JA.

Microbiology. 2008 Jul;154(Pt 7):1949-59. doi: 10.1099/mic.0.2007/015289-0.

PMID:
18599823
11.

Phenotypic and genotypic markers of Staphylococcus epidermidis virulence.

Gelosia A, Baldassarri L, Deighton M, van Nguyen T.

Clin Microbiol Infect. 2001 Apr;7(4):193-9.

12.

Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains.

Melchior MB, van Osch MH, Graat RM, van Duijkeren E, Mevius DJ, Nielen M, Gaastra W, Fink-Gremmels J.

Vet Microbiol. 2009 May 28;137(1-2):83-9. doi: 10.1016/j.vetmic.2008.12.004. Epub 2008 Dec 11.

PMID:
19150182
13.

Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo.

Christensen GD, Baddour LM, Simpson WA.

Infect Immun. 1987 Dec;55(12):2870-7.

14.

Pan-genome and comparative genome analyses of propionibacterium acnes reveal its genomic diversity in the healthy and diseased human skin microbiome.

Tomida S, Nguyen L, Chiu BH, Liu J, Sodergren E, Weinstock GM, Li H.

MBio. 2013 Apr 30;4(3):e00003-13. doi: 10.1128/mBio.00003-13.

15.

Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain.

Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM.

J Bacteriol. 2005 Apr;187(7):2426-38.

16.

Is the biofilm formation and slime producing ability of coagulase-negative staphylococci associated with the persistence and severity of intramammary infection?

Simojoki H, Hyvönen P, Plumed Ferrer C, Taponen S, Pyörälä S.

Vet Microbiol. 2012 Aug 17;158(3-4):344-52. doi: 10.1016/j.vetmic.2012.02.031. Epub 2012 Feb 28.

PMID:
22424866
17.

Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies.

Harwich MD Jr, Alves JM, Buck GA, Strauss JF 3rd, Patterson JL, Oki AT, Girerd PH, Jefferson KK.

BMC Genomics. 2010 Jun 11;11:375. doi: 10.1186/1471-2164-11-375.

18.

Phenotypic and genetic analysis of biofilm formation by Staphylococcus epidermidis.

Līduma I, Tračevska T, Bērs U, Žileviča A.

Medicina (Kaunas). 2012;48(6):305-9.

19.

Attachment and biofilm forming capabilities of Staphylococcus epidermidis strains isolated from preterm infants.

Hell E, Giske CG, Hultenby K, Danielsson KG, Marchini G.

Curr Microbiol. 2013 Dec;67(6):712-7. doi: 10.1007/s00284-013-0425-3. Epub 2013 Jul 30.

PMID:
23896692
20.

Staphylococcus epidermidis in orthopedic device infections: the role of bacterial internalization in human osteoblasts and biofilm formation.

Valour F, Trouillet-Assant S, Rasigade JP, Lustig S, Chanard E, Meugnier H, Tigaud S, Vandenesch F, Etienne J, Ferry T, Laurent F; Lyon BJI Study Group.

PLoS One. 2013 Jun 28;8(6):e67240. doi: 10.1371/journal.pone.0067240. Print 2013.

Items per page

Supplemental Content

Write to the Help Desk