Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 140

1.

Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model.

Radvanyi E, Porcher W, De Vito E, Montani A, Franger S, Jouanneau Si Larbi S.

Phys Chem Chem Phys. 2014 Aug 28;16(32):17142-53. doi: 10.1039/c4cp02324b.

PMID:
25010355
[PubMed - in process]
2.

Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.

He M, Sa Q, Liu G, Wang Y.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11152-8. doi: 10.1021/am4033668. Epub 2013 Oct 29.

PMID:
24111737
[PubMed]
3.

Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.

Chen Y, Zeng S, Qian J, Wang Y, Cao Y, Yang H, Ai X.

ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3508-12. doi: 10.1021/am4056672. Epub 2014 Feb 5.

PMID:
24467155
[PubMed]
4.

Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries.

Fu K, Lu Y, Dirican M, Chen C, Yanilmaz M, Shi Q, Bradford PD, Zhang X.

Nanoscale. 2014 Jul 7;6(13):7489-95. doi: 10.1039/c4nr00518j.

PMID:
24882561
[PubMed - in process]
5.

25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.

McDowell MT, Lee SW, Nix WD, Cui Y.

Adv Mater. 2013 Sep 25;25(36):4966-85. doi: 10.1002/adma.201301795. Epub 2013 Aug 22. Review.

PMID:
24038172
[PubMed - indexed for MEDLINE]
6.

Engineering empty space between Si nanoparticles for lithium-ion battery anodes.

Wu H, Zheng G, Liu N, Carney TJ, Yang Y, Cui Y.

Nano Lett. 2012 Feb 8;12(2):904-9. doi: 10.1021/nl203967r. Epub 2012 Jan 10.

PMID:
22224827
[PubMed - indexed for MEDLINE]
7.

In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.

Misra S, Liu N, Nelson J, Hong SS, Cui Y, Toney MF.

ACS Nano. 2012 Jun 26;6(6):5465-73. doi: 10.1021/nn301339g. Epub 2012 May 10.

PMID:
22558938
[PubMed - indexed for MEDLINE]
8.

Effect of lithiation potential and cycling on chemical and morphological evolution of Si thin film electrode studied by ToF-SIMS.

Pereira-Nabais C, ƚwiatowska J, Rosso M, Ozanam F, Seyeux A, Gohier A, Tran-Van P, Cassir M, Marcus P.

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):13023-33. doi: 10.1021/am502913q. Epub 2014 Aug 4.

PMID:
25058861
[PubMed - in process]
9.

Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.

Liu XR, Deng X, Liu RR, Yan HJ, Guo YG, Wang D, Wan LJ.

ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20317-23. doi: 10.1021/am505847s. Epub 2014 Nov 17.

PMID:
25380518
[PubMed - in process]
10.

In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries.

Tokranov A, Sheldon BW, Li C, Minne S, Xiao X.

ACS Appl Mater Interfaces. 2014 May 14;6(9):6672-86. doi: 10.1021/am500363t. Epub 2014 Apr 16.

PMID:
24670933
[PubMed - in process]
11.

Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.

Yang Y, Ren JG, Wang X, Chui YS, Wu QH, Chen X, Zhang W.

Nanoscale. 2013 Sep 21;5(18):8689-94. doi: 10.1039/c3nr02788k.

PMID:
23900559
[PubMed - indexed for MEDLINE]
12.

Mechanically and chemically robust sandwich-structured c@si@c nanotube array li-ion battery anodes.

Liu J, Li N, Goodman MD, Zhang HG, Epstein ES, Huang B, Pan Z, Kim J, Choi JH, Huang X, Liu J, Hsia KJ, Dillon SJ, Braun PV.

ACS Nano. 2015 Feb 24;9(2):1985-94. doi: 10.1021/nn507003z. Epub 2015 Feb 4.

PMID:
25639798
[PubMed - in process]
13.

Anomalous shape changes of silicon nanopillars by electrochemical lithiation.

Lee SW, McDowell MT, Choi JW, Cui Y.

Nano Lett. 2011 Jul 13;11(7):3034-9. doi: 10.1021/nl201787r. Epub 2011 Jun 9.

PMID:
21657250
[PubMed - indexed for MEDLINE]
14.

Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries.

Ko M, Chae S, Jeong S, Oh P, Cho J.

ACS Nano. 2014 Aug 26;8(8):8591-9. doi: 10.1021/nn503294z. Epub 2014 Aug 5.

PMID:
25078072
[PubMed - in process]
15.

In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.

Wu M, Sabisch JE, Song X, Minor AM, Battaglia VS, Liu G.

Nano Lett. 2013;13(11):5397-402. doi: 10.1021/nl402953h. Epub 2013 Oct 2.

PMID:
24079331
[PubMed - indexed for MEDLINE]
16.

Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.

Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y.

Nano Lett. 2011 Jul 13;11(7):2949-54. doi: 10.1021/nl201470j. Epub 2011 Jun 14.

PMID:
21668030
[PubMed - indexed for MEDLINE]
17.

Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.

Huang SZ, Jin J, Cai Y, Li Y, Tan HY, Wang HE, Van Tendeloo G, Su BL.

Nanoscale. 2014 Jun 21;6(12):6819-27. doi: 10.1039/c4nr01389a.

PMID:
24828316
[PubMed - in process]
18.

Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space.

Hertzberg B, Alexeev A, Yushin G.

J Am Chem Soc. 2010 Jun 30;132(25):8548-9. doi: 10.1021/ja1031997.

PMID:
20527882
[PubMed]
19.

Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation.

Cho JH, Picraux ST.

Nano Lett. 2014 Jun 11;14(6):3088-95. doi: 10.1021/nl500130e. Epub 2014 May 7.

PMID:
24773368
[PubMed - in process]
20.

Metal-induced crystallization of highly corrugated silicon thick films as potential anodes for Li-ion batteries.

Qu F, Li C, Wang Z, Strunk HP, Maier J.

ACS Appl Mater Interfaces. 2014 Jun 11;6(11):8782-8. doi: 10.1021/am501570w. Epub 2014 May 12.

PMID:
24797020
[PubMed - in process]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk