Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 94

1.

The Role of Ligand Density and Size in Mediating Quantum Dot Nuclear Transport.

Tang PS, Sathiamoorthy S, Lustig LC, Ponzielli R, Inamoto I, Penn LZ, Shin JA, Chan WC.

Small. 2014 Jul 2. doi: 10.1002/smll.201401056. [Epub ahead of print]

PMID:
24990622
[PubMed - as supplied by publisher]
2.

Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.

Ding C, Zhu A, Tian Y.

Acc Chem Res. 2014 Jan 21;47(1):20-30. doi: 10.1021/ar400023s. Epub 2013 Aug 2. Review.

PMID:
23911118
[PubMed - indexed for MEDLINE]
3.

Nanoparticles can induce changes in the intracellular metabolism of lipids without compromising cellular viability.

Przybytkowski E, Behrendt M, Dubois D, Maysinger D.

FEBS J. 2009 Nov;276(21):6204-17. doi: 10.1111/j.1742-4658.2009.07324.x. Epub 2009 Sep 23.

PMID:
19780838
[PubMed - indexed for MEDLINE]
4.

Cell uptake and intracellular visualization using quantum dots or nuclear localization signal-modified quantum dots with gold nanoparticles as quenchers.

Kuo KW, Chen TH, Kuo WT, Huang HY, Lo HY, Huang YY.

J Nanosci Nanotechnol. 2010 Jul;10(7):4173-7.

PMID:
21128397
[PubMed - indexed for MEDLINE]
5.

Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization.

Feswick A, Griffitt RJ, Siebein K, Barber DS.

Aquat Toxicol. 2013 Apr 15;130-131:210-8. doi: 10.1016/j.aquatox.2013.01.002. Epub 2013 Jan 20.

PMID:
23419536
[PubMed - indexed for MEDLINE]
6.

Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention.

Yang C, Uertz J, Yohan D, Chithrani BD.

Nanoscale. 2014 Sep 3. [Epub ahead of print]

PMID:
25182693
[PubMed - as supplied by publisher]
7.

The gold standard: gold nanoparticle libraries to understand the nano-bio interface.

Alkilany AM, Lohse SE, Murphy CJ.

Acc Chem Res. 2013 Mar 19;46(3):650-61. doi: 10.1021/ar300015b. Epub 2012 Jun 25.

PMID:
22732239
[PubMed - indexed for MEDLINE]
8.

Evaluation of diverse peptidyl motifs for cellular delivery of semiconductor quantum dots.

Gemmill KB, Muttenthaler M, Delehanty JB, Stewart MH, Susumu K, Dawson PE, Medintz IL.

Anal Bioanal Chem. 2013 Jul;405(19):6145-54. doi: 10.1007/s00216-013-6982-2. Epub 2013 Jun 4.

PMID:
23732866
[PubMed - indexed for MEDLINE]
9.

Exocytosis of nanoparticles from cells: role in cellular retention and toxicity.

Sakhtianchi R, Minchin RF, Lee KB, Alkilany AM, Serpooshan V, Mahmoudi M.

Adv Colloid Interface Sci. 2013 Dec;201-202:18-29. doi: 10.1016/j.cis.2013.10.013. Epub 2013 Oct 23. Review.

PMID:
24200091
[PubMed - indexed for MEDLINE]
10.

Nanoparticles for applications in cellular imaging.

Thurn KT, Brown E, Wu A, Vogt S, Lai B, Maser J, Paunesku T, Woloschak GE.

Nanoscale Res Lett. 2007 Aug 15;2(9):430-41. doi: 10.1007/s11671-007-9081-5.

PMID:
21794189
[PubMed]
Free PMC Article
11.

Enhanced cellular uptake and cytotoxicity studies of organometallic bioconjugates of the NLS peptide in Hep G2 cells.

Noor F, Kinscherf R, Bonaterra GA, Walczak S, W├Âlfl S, Metzler-Nolte N.

Chembiochem. 2009 Feb 13;10(3):493-502. doi: 10.1002/cbic.200800469.

PMID:
19115329
[PubMed - indexed for MEDLINE]
12.

Surface engineering of inorganic nanoparticles for imaging and therapy.

Nam J, Won N, Bang J, Jin H, Park J, Jung S, Jung S, Park Y, Kim S.

Adv Drug Deliv Rev. 2013 May;65(5):622-48. doi: 10.1016/j.addr.2012.08.015. Epub 2012 Sep 6. Review.

PMID:
22975010
[PubMed - indexed for MEDLINE]
13.

Effect of wheat germ agglutinin density on cellular uptake and toxicity of wheat germ agglutinin conjugated PEG-PLA nanoparticles in Calu-3 cells.

Shen Y, Chen J, Liu Q, Feng C, Gao X, Wang L, Zhang Q, Jiang X.

Int J Pharm. 2011 Jul 15;413(1-2):184-93. doi: 10.1016/j.ijpharm.2011.04.026. Epub 2011 Apr 28.

PMID:
21550388
[PubMed - indexed for MEDLINE]
14.

Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.

Hamada M, Nakanishi S, Itoh T, Ishikawa M, Biju V.

ACS Nano. 2010 Aug 24;4(8):4445-54. doi: 10.1021/nn100698u.

PMID:
20731430
[PubMed - indexed for MEDLINE]
15.

The effect of nanoparticle size, shape, and surface chemistry on biological systems.

Albanese A, Tang PS, Chan WC.

Annu Rev Biomed Eng. 2012;14:1-16. doi: 10.1146/annurev-bioeng-071811-150124. Epub 2012 Apr 18. Review.

PMID:
22524388
[PubMed - indexed for MEDLINE]
16.

Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

Weiss EA.

Acc Chem Res. 2013 Nov 19;46(11):2607-15. doi: 10.1021/ar400078u. Epub 2013 Jun 4.

PMID:
23734589
[PubMed]
17.

Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging.

Xu XH, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ.

Biochemistry. 2004 Aug 17;43(32):10400-13.

PMID:
15301539
[PubMed - indexed for MEDLINE]
18.

The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line.

Clift MJ, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V.

Toxicol Appl Pharmacol. 2008 Nov 1;232(3):418-27. doi: 10.1016/j.taap.2008.06.009. Epub 2008 Jul 1.

PMID:
18708083
[PubMed - indexed for MEDLINE]
19.

Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells.

Aaron JS, Greene AC, Kotula PG, Bachand GD, Timlin JA.

Small. 2011 Feb 7;7(3):334-41. doi: 10.1002/smll.201001619. Epub 2010 Dec 29.

PMID:
21294262
[PubMed - indexed for MEDLINE]
20.

Uptake and intracellular fate of surface-modified gold nanoparticles.

Nativo P, Prior IA, Brust M.

ACS Nano. 2008 Aug;2(8):1639-44. doi: 10.1021/nn800330a.

PMID:
19206367
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk