Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 87

Similar articles for PubMed (Select 24956199)

1.

Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water.

Xing Z, Liu Q, Asiri AM, Sun X.

Adv Mater. 2014 Aug 27;26(32):5702-7. doi: 10.1002/adma.201401692. Epub 2014 Jun 23.

PMID:
24956199
2.

Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution.

Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X.

Angew Chem Int Ed Engl. 2014 Jun 23;53(26):6710-4. doi: 10.1002/anie.201404161. Epub 2014 May 20.

PMID:
24845625
3.

Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.

Kibsgaard J, Jaramillo TF.

Angew Chem Int Ed Engl. 2014 Dec 22;53(52):14433-7. doi: 10.1002/anie.201408222. Epub 2014 Oct 30.

PMID:
25359678
4.

Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.

McCrory CC, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF.

J Am Chem Soc. 2015 Apr 8;137(13):4347-57. doi: 10.1021/ja510442p. Epub 2015 Mar 25.

PMID:
25668483
5.

Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE.

ACS Nano. 2014 Nov 25;8(11):11101-7. doi: 10.1021/nn5048553. Epub 2014 Oct 1.

PMID:
25250976
6.

CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction.

Kong D, Wang H, Lu Z, Cui Y.

J Am Chem Soc. 2014 Apr 2;136(13):4897-900. doi: 10.1021/ja501497n. Epub 2014 Mar 18.

PMID:
24628572
7.

Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction.

Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE.

J Am Chem Soc. 2013 Jun 26;135(25):9267-70. doi: 10.1021/ja403440e. Epub 2013 Jun 13.

PMID:
23763295
8.

Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.

McCrory CC, Jung S, Peters JC, Jaramillo TF.

J Am Chem Soc. 2013 Nov 13;135(45):16977-87. doi: 10.1021/ja407115p. Epub 2013 Oct 30.

PMID:
24171402
9.

Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction.

Liu Y, Li GD, Yuan L, Ge L, Ding H, Wang D, Zou X.

Nanoscale. 2015 Feb 21;7(7):3130-6. doi: 10.1039/c4nr06295g.

PMID:
25611887
10.

Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values.

Pu Z, Liu Q, Asiri AM, Sun X.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):21874-9. doi: 10.1021/am5060178. Epub 2014 Dec 2.

PMID:
25456493
11.

Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis.

Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C.

ACS Nano. 2014 Aug 26;8(8):8121-9. doi: 10.1021/nn5022204. Epub 2014 Jul 30.

PMID:
25065948
12.

Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles.

McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Read CG, Lewis NS, Schaak RE.

Chem Commun (Camb). 2014 Sep 28;50(75):11026-8. doi: 10.1039/c4cc04709e. Epub 2014 Aug 6.

PMID:
25099117
13.

Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles.

Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE.

Angew Chem Int Ed Engl. 2014 May 19;53(21):5427-30. doi: 10.1002/anie.201402646. Epub 2014 Apr 11.

PMID:
24729482
14.

An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation.

Gao MR, Liang JX, Zheng YR, Xu YF, Jiang J, Gao Q, Li J, Yu SH.

Nat Commun. 2015 Jan 14;6:5982. doi: 10.1038/ncomms6982.

15.

Molybdenum phosphide: a new highly efficient catalyst for the electrochemical hydrogen evolution reaction.

Chen X, Wang D, Wang Z, Zhou P, Wu Z, Jiang F.

Chem Commun (Camb). 2014 Oct 11;50(79):11683-5. doi: 10.1039/c4cc05936k.

PMID:
25140613
16.

In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution.

Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y.

J Am Chem Soc. 2015 Feb 25;137(7):2688-94. doi: 10.1021/ja5127165. Epub 2015 Feb 17.

PMID:
25658518
17.

Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode.

Pu Z, Liu Q, Tang C, Asiri AM, Sun X.

Nanoscale. 2014 Oct 7;6(19):11031-4. doi: 10.1039/c4nr03037k.

PMID:
25142938
18.

Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water.

Sun Y, Liu C, Grauer DC, Yano J, Long JR, Yang P, Chang CJ.

J Am Chem Soc. 2013 Nov 27;135(47):17699-702. doi: 10.1021/ja4094764. Epub 2013 Nov 13.

PMID:
24219808
19.

Hollow core-shell structured ni-sn@c nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction.

Lang L, Shi Y, Wang J, Wang FB, Xia XH.

ACS Appl Mater Interfaces. 2015 May 6;7(17):9098-102. doi: 10.1021/acsami.5b00873. Epub 2015 Apr 22.

PMID:
25871787
20.

Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14.

Tian J, Liu Q, Asiri AM, Sun X.

J Am Chem Soc. 2014 May 28;136(21):7587-90. doi: 10.1021/ja503372r. Epub 2014 May 15.

PMID:
24830333
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk