Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways.

Reyniers L, Del Giudice MG, Civiero L, Belluzzi E, Lobbestael E, Beilina A, Arrigoni G, Derua R, Waelkens E, Li Y, Crosio C, Iaccarino C, Cookson MR, Baekelandt V, Greggio E, Taymans JM.

J Neurochem. 2014 Oct;131(2):239-50. doi: 10.1111/jnc.12798. Epub 2014 Jul 14.

2.

Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers.

Civiero L, Vancraenenbroeck R, Belluzzi E, Beilina A, Lobbestael E, Reyniers L, Gao F, Micetic I, De Maeyer M, Bubacco L, Baekelandt V, Cookson MR, Greggio E, Taymans JM.

PLoS One. 2012;7(8):e43472. doi: 10.1371/journal.pone.0043472. Epub 2012 Aug 29.

3.

Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?

Civiero L, Bubacco L.

Biochem Soc Trans. 2012 Oct;40(5):1095-101. Review.

PMID:
22988872
4.

Metabolic labeling of leucine rich repeat kinases 1 and 2 with radioactive phosphate.

Taymans JM, Gao F, Baekelandt V.

J Vis Exp. 2013 Sep 18;(79):e50523. doi: 10.3791/50523.

5.

Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis.

Xing W, Liu J, Cheng S, Vogel P, Mohan S, Brommage R.

J Bone Miner Res. 2013 Sep;28(9):1962-74. doi: 10.1002/jbmr.1935.

6.

Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: Implications for Parkinson's disease.

Westerlund M, Belin AC, Anvret A, Bickford P, Olson L, Galter D.

Neuroscience. 2008 Mar 18;152(2):429-36. doi: 10.1016/j.neuroscience.2007.10.062. Epub 2008 Jan 10.

PMID:
18272292
7.

LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain.

Korr D, Toschi L, Donner P, Pohlenz HD, Kreft B, Weiss B.

Cell Signal. 2006 Jun;18(6):910-20. Epub 2005 Oct 21.

PMID:
16243488
8.

Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways.

Sancho RM, Law BM, Harvey K.

Hum Mol Genet. 2009 Oct 15;18(20):3955-68. doi: 10.1093/hmg/ddp337. Epub 2009 Jul 22.

9.

Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily.

Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, Biskup S, Xiong Y, Bandopadhyay R, Dawson VL, Dawson TM, Moore DJ.

Hum Mol Genet. 2014 Apr 15;23(8):2055-77. doi: 10.1093/hmg/ddt600. Epub 2013 Nov 26.

10.

Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice.

Giesert F, Hofmann A, Bürger A, Zerle J, Kloos K, Hafen U, Ernst L, Zhang J, Vogt-Weisenhorn DM, Wurst W.

PLoS One. 2013 May 10;8(5):e63778. doi: 10.1371/journal.pone.0063778. Print 2013.

11.

LRRK2 transport is regulated by its novel interacting partner Rab32.

Waschbüsch D, Michels H, Strassheim S, Ossendorf E, Kessler D, Gloeckner CJ, Barnekow A.

PLoS One. 2014 Oct 31;9(10):e111632. doi: 10.1371/journal.pone.0111632. eCollection 2014.

12.

LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity.

Gómez-Suaga P, Rivero-Ríos P, Fdez E, Blanca Ramírez M, Ferrer I, Aiastui A, López De Munain A, Hilfiker S.

Hum Mol Genet. 2014 Dec 20;23(25):6779-96. doi: 10.1093/hmg/ddu395. Epub 2014 Jul 30.

13.

Leucine-rich repeat kinase 1: a paralog of LRRK2 and a candidate gene for Parkinson's disease.

Taylor JP, Hulihan MM, Kachergus JM, Melrose HL, Lincoln SJ, Hinkle KM, Stone JT, Ross OA, Hauser R, Aasly J, Gasser T, Payami H, Wszolek ZK, Farrer MJ.

Neurogenetics. 2007 Apr;8(2):95-102. Epub 2007 Jan 16.

PMID:
17225181
14.

Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.

Klein CL, Rovelli G, Springer W, Schall C, Gasser T, Kahle PJ.

J Neurochem. 2009 Nov;111(3):703-15. doi: 10.1111/j.1471-4159.2009.06358.x. Epub 2009 Aug 27.

15.

Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells.

Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT.

J Neurochem. 2008 May;105(3):1048-56. doi: 10.1111/j.1471-4159.2008.05217.x. Epub 2008 Jan 7.

16.

Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate.

Krumova P, Reyniers L, Meyer M, Lobbestael E, Stauffer D, Gerrits B, Muller L, Hoving S, Kaupmann K, Voshol J, Fabbro D, Bauer A, Rovelli G, Taymans JM, Bouwmeester T, Baekelandt V.

FASEB J. 2015 Jul;29(7):2980-92. doi: 10.1096/fj.14-262329. Epub 2015 Apr 8.

PMID:
25854701
17.

An early endosome regulator, Rab5b, is an LRRK2 kinase substrate.

Yun HJ, Kim H, Ga I, Oh H, Ho DH, Kim J, Seo H, Son I, Seol W.

J Biochem. 2015 Jun;157(6):485-95. doi: 10.1093/jb/mvv005. Epub 2015 Jan 19.

PMID:
25605758
18.

A QUICK screen for Lrrk2 interaction partners--leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics.

Meixner A, Boldt K, Van Troys M, Askenazi M, Gloeckner CJ, Bauer M, Marto JA, Ampe C, Kinkl N, Ueffing M.

Mol Cell Proteomics. 2011 Jan;10(1):M110.001172. doi: 10.1074/mcp.M110.001172. Epub 2010 Sep 27.

19.

Identification and characterization of a leucine-rich repeat kinase 2 (LRRK2) consensus phosphorylation motif.

Pungaliya PP, Bai Y, Lipinski K, Anand VS, Sen S, Brown EL, Bates B, Reinhart PH, West AB, Hirst WD, Braithwaite SP.

PLoS One. 2010 Oct 27;5(10):e13672. doi: 10.1371/journal.pone.0013672.

20.

RNA interference of LRRK2-microarray expression analysis of a Parkinson's disease key player.

Häbig K, Walter M, Poths S, Riess O, Bonin M.

Neurogenetics. 2008 May;9(2):83-94. Epub 2007 Dec 21.

PMID:
18097693
Items per page

Supplemental Content

Write to the Help Desk