Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Tuning the growth mode of nanowires via the interaction among seeds, substrates and beam fluxes.

Zannier V, Grillo V, Martelli F, Plaisier JR, Lausi A, Rubini S.

Nanoscale. 2014 Jul 21;6(14):8392-9. doi: 10.1039/c4nr01183j.

PMID:
24942288
2.

Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.

Dheeraj DL, Munshi AM, Scheffler M, van Helvoort AT, Weman H, Fimland BO.

Nanotechnology. 2013 Jan 11;24(1):015601. doi: 10.1088/0957-4484/24/1/015601. Epub 2012 Dec 5.

PMID:
23220972
3.

Site-controlled VLS growth of planar nanowires: yield and mechanism.

Zhang C, Miao X, Mohseni PK, Choi W, Li X.

Nano Lett. 2014 Dec 10;14(12):6836-41. doi: 10.1021/nl502525z. Epub 2014 Nov 13.

PMID:
25343224
4.

Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy.

Zhang Z, Shi SX, Chen PP, Lu W, Zou J.

Nanotechnology. 2015 Jan 26;26(25):255601. doi: 10.1088/0957-4484/26/25/255601. Epub 2015 May 29.

PMID:
26024290
5.

Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy.

Zhang Y, Aagesen M, Holm JV, Jørgensen HI, Wu J, Liu H.

Nano Lett. 2013 Aug 14;13(8):3897-902. doi: 10.1021/nl401981u. Epub 2013 Aug 2.

PMID:
23899047
6.

Demonstration of Sn-seeded GaSb homo- and GaAs-GaSb heterostructural nanowires.

Tornberg M, Mårtensson EK, Zamani RR, Lehmann S, Dick KA, Ghalamestani SG.

Nanotechnology. 2016 Apr 29;27(17):175602. doi: 10.1088/0957-4484/27/17/175602. Epub 2016 Mar 17.

PMID:
26984940
7.

Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.

Mohan P, Bag R, Singh S, Kumar A, Tyagi R.

Nanotechnology. 2012 Jan 20;23(2):025601. doi: 10.1088/0957-4484/23/2/025601. Epub 2011 Dec 14.

PMID:
22166369
8.

Controlling the morphology, composition and crystal structure in gold-seeded GaAs(1-x)Sb(x) nanowires.

Yuan X, Caroff P, Wong-Leung J, Tan HH, Jagadish C.

Nanoscale. 2015 Mar 21;7(11):4995-5003. doi: 10.1039/c4nr06307d.

PMID:
25692266
9.

Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.

Tchernycheva M, Harmand JC, Patriarche G, Travers L, Cirlin GE.

Nanotechnology. 2006 Aug 28;17(16):4025-30. doi: 10.1088/0957-4484/17/16/005. Epub 2006 Jul 14.

PMID:
21727532
10.

Zn(1-x)Mg(x)Te nanowires grown by solid source molecular beam epitaxy.

Janik E, Dynowska E, Dłużewski P, Kret S, Presz A, Zaleszczyk W, Szuszkiewicz W, Morhange JF, Petroutchik A, Maćkowski S, Wojtowicz T.

Nanotechnology. 2008 Sep 10;19(36):365606. doi: 10.1088/0957-4484/19/36/365606. Epub 2008 Jul 28.

PMID:
21828877
11.

Structure and morphology in diffusion-driven growth of nanowires: the case of ZnTe.

Rueda-Fonseca P, Bellet-Amalric E, Vigliaturo R, den Hertog M, Genuist Y, André R, Robin E, Artioli A, Stepanov P, Ferrand D, Kheng K, Tatarenko S, Cibert J.

Nano Lett. 2014;14(4):1877-83. doi: 10.1021/nl4046476. Epub 2014 Mar 6.

PMID:
24564275
12.

Control of GaAs nanowire morphology and crystal structure.

Plante MC, Lapierre RR.

Nanotechnology. 2008 Dec 10;19(49):495603. doi: 10.1088/0957-4484/19/49/495603. Epub 2008 Nov 19.

PMID:
21730678
13.

Control and understanding of kink formation in InAs-InP heterostructure nanowires.

Fahlvik Svensson S, Jeppesen S, Thelander C, Samuelson L, Linke H, Dick KA.

Nanotechnology. 2013 Aug 30;24(34):345601. doi: 10.1088/0957-4484/24/34/345601. Epub 2013 Jul 30.

PMID:
23900037
14.

Defect transfer from nanoparticles to nanowires.

Barth S, Boland JJ, Holmes JD.

Nano Lett. 2011 Apr 13;11(4):1550-5. doi: 10.1021/nl104339w. Epub 2011 Mar 7.

PMID:
21381709
15.

Confinement-guided shaping of semiconductor nanowires and nanoribbons: "writing with nanowires".

Pevzner A, Engel Y, Elnathan R, Tsukernik A, Barkay Z, Patolsky F.

Nano Lett. 2012 Jan 11;12(1):7-12. doi: 10.1021/nl201527h. Epub 2011 Dec 14.

PMID:
22142384
16.

Defect-free zinc-blende structured InAs nanowires realized by in situ two V/III ratio growth in molecular beam epitaxy.

Zhang Z, Lu ZY, Chen PP, Lu W, Zou J.

Nanoscale. 2015 Aug 7;7(29):12592-7. doi: 10.1039/c5nr03503a. Epub 2015 Jul 6.

PMID:
26145435
17.

Parallel-aligned GaAs nanowires with 110 orientation laterally grown on [311]B substrates via the gold-catalyzed vapor-liquid-solid mode.

Zhang G, Tateno K, Gotoh H, Nakano H.

Nanotechnology. 2010 Mar 5;21(9):095607. doi: 10.1088/0957-4484/21/9/095607. Epub 2010 Feb 8.

PMID:
20139489
18.

New mode of vapor-liquid-solid nanowire growth.

Dubrovskii VG, Cirlin GE, Sibirev NV, Jabeen F, Harmand JC, Werner P.

Nano Lett. 2011 Mar 9;11(3):1247-53. doi: 10.1021/nl104238d. Epub 2011 Feb 23.

PMID:
21344916
19.

Catalytic role of gold nanoparticle in GaAs nanowire growth: a density functional theory study.

Kratzer P, Sakong S, Pankoke V.

Nano Lett. 2012 Feb 8;12(2):943-8. doi: 10.1021/nl204004p. Epub 2012 Jan 30.

PMID:
22268683
20.

A cathodoluminescence study of the influence of the seed particle preparation method on the optical properties of GaAs nanowires.

Gustafsson A, Hillerich K, Messing ME, Storm K, Dick KA, Deppert K, Bolinsson J.

Nanotechnology. 2012 Jul 5;23(26):265704. doi: 10.1088/0957-4484/23/26/265704. Epub 2012 Jun 15.

PMID:
22699683
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk