Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome.

Fleischman NM, Das D, Kumar A, Xu Q, Chiu HJ, Jaroszewski L, Knuth MW, Klock HE, Miller MD, Elsliger MA, Godzik A, Lesley SA, Deacon AM, Wilson IA, Toney MD.

Protein Sci. 2014 Aug;23(8):1060-76. doi: 10.1002/pro.2493. Epub 2014 Jun 14.

PMID:
24888348
2.

Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate.

Sivaraman J, Li Y, Larocque R, Schrag JD, Cygler M, Matte A.

J Mol Biol. 2001 Aug 24;311(4):761-76.

PMID:
11518529
3.

Stereospecificity for the hydrogen transfer and molecular evolution of pyridoxal enzymes.

Yoshimura T, Jhee KH, Soda K.

Biosci Biotechnol Biochem. 1996 Feb;60(2):181-7. Review.

PMID:
9063963
4.

Crystal structures of the Chromobacterium violaceumω-transaminase reveal major structural rearrangements upon binding of coenzyme PLP.

Humble MS, Cassimjee KE, Håkansson M, Kimbung YR, Walse B, Abedi V, Federsel HJ, Berglund P, Logan DT.

FEBS J. 2012 Mar;279(5):779-92. doi: 10.1111/j.1742-4658.2012.08468.x. Epub 2012 Jan 23.

PMID:
22268978
5.

Crystal structure and substrate specificity of the thermophilic serine:pyruvate aminotransferase from Sulfolobus solfataricus.

Sayer C, Bommer M, Isupov M, Ward J, Littlechild J.

Acta Crystallogr D Biol Crystallogr. 2012 Jul;68(Pt 7):763-72. doi: 10.1107/S0907444912011274. Epub 2012 Jun 15.

PMID:
22751661
6.

Chemogenomics of pyridoxal 5'-phosphate dependent enzymes.

Singh R, Spyrakis F, Cozzini P, Paiardini A, Pascarella S, Mozzarelli A.

J Enzyme Inhib Med Chem. 2013 Feb;28(1):183-94. doi: 10.3109/14756366.2011.643305. Epub 2011 Dec 19.

PMID:
22181815
7.

Streptomyces wadayamensis MppP Is a Pyridoxal 5'-Phosphate-Dependent L-Arginine α-Deaminase, γ-Hydroxylase in the Enduracididine Biosynthetic Pathway.

Han L, Schwabacher AW, Moran GR, Silvaggi NR.

Biochemistry. 2015 Dec 1;54(47):7029-40. doi: 10.1021/acs.biochem.5b01016. Epub 2015 Nov 17.

PMID:
26551990
8.

Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5'-phosphate-dependent enzymes.

Käck H, Sandmark J, Gibson K, Schneider G, Lindqvist Y.

J Mol Biol. 1999 Aug 27;291(4):857-76.

PMID:
10452893
9.

From cofactor to enzymes. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes.

Christen P, Mehta PK.

Chem Rec. 2001;1(6):436-47. Review.

PMID:
11933250
10.

Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme.

Vacca RA, Giannattasio S, Capitani G, Marra E, Christen P.

BMC Biochem. 2008 Jun 19;9:17. doi: 10.1186/1471-2091-9-17.

PMID:
18565210
11.

Functional evolution of PLP-dependent enzymes based on active-site structural similarities.

Catazaro J, Caprez A, Guru A, Swanson D, Powers R.

Proteins. 2014 Oct;82(10):2597-608. doi: 10.1002/prot.24624. Epub 2014 Jun 20.

PMID:
24920327
12.

Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 A resolution: comparison of the unligated enzyme and a complex with alpha-methyl-l-glutamate.

Hester G, Stark W, Moser M, Kallen J, Marković-Housley Z, Jansonius JN.

J Mol Biol. 1999 Feb 26;286(3):829-50.

PMID:
10024454
13.

Effects of the E177K mutation in D-amino acid transaminase. Studies on an essential coenzyme anchoring group that contributes to stereochemical fidelity.

van Ophem PW, Peisach D, Erickson SD, Soda K, Ringe D, Manning JM.

Biochemistry. 1999 Jan 26;38(4):1323-31.

PMID:
9930994
14.

Crystal structure of the ω-aminotransferase from Paracoccus denitrificans and its phylogenetic relationship with other class III aminotransferases that have biotechnological potential.

Rausch C, Lerchner A, Schiefner A, Skerra A.

Proteins. 2013 May;81(5):774-87. doi: 10.1002/prot.24233. Epub 2013 Jan 15.

PMID:
23239223
15.

Stereospecificity for the hydrogen transfer of pyridoxal enzyme reactions.

Soda K, Yoshimura T, Esaki N.

Chem Rec. 2001;1(5):373-84. Review.

PMID:
11933244
16.

Structure of phosphoserine aminotransferase from Mycobacterium tuberculosis.

Coulibaly F, Lassalle E, Baker HM, Baker EN.

Acta Crystallogr D Biol Crystallogr. 2012 May;68(Pt 5):553-63. doi: 10.1107/S0907444912004829. Epub 2012 Apr 17.

PMID:
22525753
17.

PLP undergoes conformational changes during the course of an enzymatic reaction.

Ngo HP, Cerqueira NM, Kim JK, Hong MK, Fernandes PA, Ramos MJ, Kang LW.

Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):596-606. doi: 10.1107/S1399004713031283. Epub 2014 Jan 31.

PMID:
24531493
18.

Type I pyridoxal 5'-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines.

Milano T, Paiardini A, Grgurina I, Pascarella S.

BMC Struct Biol. 2013 Oct 23;13:26. doi: 10.1186/1472-6807-13-26.

PMID:
24148833
19.

Pyridoxal-5'-phosphate-dependent enzymes involved in biotin biosynthesis: structure, reaction mechanism and inhibition.

Mann S, Ploux O.

Biochim Biophys Acta. 2011 Nov;1814(11):1459-66. doi: 10.1016/j.bbapap.2010.12.004. Epub 2010 Dec 21. Review.

PMID:
21182990
20.

Role of conserved active site tryptophan-101 in functional activity and stability of phosphoserine aminotransferase from an enteric human parasite.

Mishra V, Kumar A, Ali V, Nozaki T, Zhang KY, Bhakuni V.

Amino Acids. 2012 Jul;43(1):483-91. doi: 10.1007/s00726-011-1105-x. Epub 2011 Oct 29.

PMID:
22038178
Items per page

Supplemental Content

Write to the Help Desk