Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

Similar articles for PubMed (Select 24868034)

1.

Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis.

Shi H, Ye T, Zhu JK, Chan Z.

J Exp Bot. 2014 Aug;65(15):4119-31. doi: 10.1093/jxb/eru184. Epub 2014 May 27.

2.

Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance.

Shi HT, Li RJ, Cai W, Liu W, Wang CL, Lu YT.

Plant Cell Physiol. 2012 Feb;53(2):344-57. doi: 10.1093/pcp/pcr181. Epub 2011 Dec 19.

PMID:
22186181
3.

In vivo role of nitric oxide in plant response to abiotic and biotic stress.

Shi HT, Li RJ, Cai W, Liu W, Fu ZW, Lu YT.

Plant Signal Behav. 2012 Mar;7(3):437-9. doi: 10.4161/psb.19219. Epub 2012 Mar 1.

4.
5.

Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

Li Y, Zhang J, Zhang J, Hao L, Hua J, Duan L, Zhang M, Li Z.

Plant Biotechnol J. 2013 Aug;11(6):747-58. doi: 10.1111/pbi.12066. Epub 2013 Apr 13.

PMID:
23581509
7.

Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

González-Guzmán M, Rodríguez L, Lorenzo-Orts L, Pons C, Sarrión-Perdigones A, Fernández MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodríguez PL.

J Exp Bot. 2014 Aug;65(15):4451-64. doi: 10.1093/jxb/eru219. Epub 2014 May 26.

8.

A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis.

Lee S, Seo PJ, Lee HJ, Park CM.

Plant J. 2012 Jun;70(5):831-44. doi: 10.1111/j.1365-313X.2012.04932.x. Epub 2012 Mar 31.

PMID:
22313226
9.

Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses.

Seo DH, Ryu MY, Jammes F, Hwang JH, Turek M, Kang BG, Kwak JM, Kim WT.

Plant Physiol. 2012 Sep;160(1):556-68. doi: 10.1104/pp.112.202143. Epub 2012 Jul 24.

10.

GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis.

Zhou T, Yang X, Wang L, Xu J, Zhang X.

Plant Mol Biol. 2014 May;85(1-2):163-77. doi: 10.1007/s11103-014-0175-z. Epub 2014 Jan 29.

PMID:
24473898
11.

miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner.

Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM.

BMC Plant Biol. 2013 Dec 11;13:210. doi: 10.1186/1471-2229-13-210.

12.

Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses.

Qin LX, Li Y, Li DD, Xu WL, Zheng Y, Li XB.

Plant Mol Biol. 2014 Dec;86(6):609-25. doi: 10.1007/s11103-014-0251-4. Epub 2014 Sep 14.

PMID:
25218132
13.

The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses.

Cho SK, Ryu MY, Seo DH, Kang BG, Kim WT.

Plant Physiol. 2011 Dec;157(4):2240-57. doi: 10.1104/pp.111.185595. Epub 2011 Oct 10.

14.

Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis.

Wi SJ, Kim SJ, Kim WT, Park KY.

Planta. 2014 May;239(5):979-88. doi: 10.1007/s00425-014-2027-0. Epub 2014 Jan 30.

PMID:
24477528
15.

The tumor necrosis factor receptor-associated factor (TRAF)-like family protein SEVEN IN ABSENTIA 2 (SINA2) promotes drought tolerance in an ABA-dependent manner in Arabidopsis.

Bao Y, Wang C, Jiang C, Pan J, Zhang G, Liu H, Zhang H.

New Phytol. 2014 Apr;202(1):174-87. doi: 10.1111/nph.12644. Epub 2013 Dec 18.

PMID:
24350984
16.

Regulation of reactive oxygen species generation under drought conditions in Arabidopsis.

Lee S, Park CM.

Plant Signal Behav. 2012 Jun;7(6):599-601. doi: 10.4161/psb.19940. Epub 2012 May 14.

17.

Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses.

Zhang X, Yang G, Shi R, Han X, Qi L, Wang R, Xiong L, Li G.

Plant Physiol Biochem. 2013 Jun;67:189-98. doi: 10.1016/j.plaphy.2013.03.013. Epub 2013 Mar 26.

PMID:
23583936
18.

Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance.

DU ZY, Chen MX, Chen QF, Xiao S, Chye ML.

Plant Cell Environ. 2013 Feb;36(2):300-14. doi: 10.1111/j.1365-3040.2012.02574.x. Epub 2012 Aug 8.

PMID:
22788984
19.

High-level expression of sugar inducible gene2 (HSI2) is a negative regulator of drought stress tolerance in Arabidopsis.

Sharma N, Bender Y, Boyle K, Fobert PR.

BMC Plant Biol. 2013 Oct 29;13:170. doi: 10.1186/1471-2229-13-170.

20.

Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure.

Van Houtte H, Vandesteene L, López-Galvis L, Lemmens L, Kissel E, Carpentier S, Feil R, Avonce N, Beeckman T, Lunn JE, Van Dijck P.

Plant Physiol. 2013 Mar;161(3):1158-71. doi: 10.1104/pp.112.211391. Epub 2013 Jan 22.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk