Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 150

Similar articles for PubMed (Select 24834941)

1.

Neuronavigation using susceptibility-weighted venography: application to deep brain stimulation and comparison with gadolinium contrast.

Bériault S, Sadikot AF, Alsubaie F, Drouin S, Collins DL, Pike GB.

J Neurosurg. 2014 Jul;121(1):131-41. doi: 10.3171/2014.3.JNS131860. Epub 2014 May 16.

PMID:
24834941
2.

A multi-modal approach to computer-assisted deep brain stimulation trajectory planning.

Bériault S, Subaie FA, Collins DL, Sadikot AF, Pike GB.

Int J Comput Assist Radiol Surg. 2012 Sep;7(5):687-704. doi: 10.1007/s11548-012-0768-4. Epub 2012 Jun 21.

PMID:
22718401
3.

Susceptibility-Weighted MRI for Deep Brain Stimulation: Potentials in Trajectory Planning.

Hertel F, Husch A, Dooms G, Bernard F, Gemmar P.

Stereotact Funct Neurosurg. 2015 Jul 22;93(5):303-308. [Epub ahead of print]

PMID:
26202899
4.

Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives.

Di Ieva A, Lam T, Alcaide-Leon P, Bharatha A, Montanera W, Cusimano MD.

J Neurosurg. 2015 Jul 24:1-13. [Epub ahead of print]

PMID:
26207600
5.

Automatic trajectory planning of DBS neurosurgery from multi-modal MRI datasets.

Bériault S, Al Subaie F, Mok K, Sadikot AF, Pike GB.

Med Image Comput Comput Assist Interv. 2011;14(Pt 1):259-66.

PMID:
22003625
6.

Visualization of small veins with susceptibility-weighted imaging for stereotactic trajectory planning in deep brain stimulation.

Mahvash M, Pechlivanis I, Charalampaki P, Jansen O, Mehdorn HM.

Clin Neurol Neurosurg. 2014 Sep;124:151-5. doi: 10.1016/j.clineuro.2014.06.041. Epub 2014 Jul 7.

PMID:
25051166
7.

Does probe's eye subthalamic nucleus length on T2W MRI correspond with microelectrode recording in patients with deep brain stimulation for advanced Parkinson's disease?

Kocabicak E, Aygun D, Ozaydin I, Jahanshahi A, Tan S, Onar M, Boke O, Kurt M, Guz H, Terzi M, Alptekin O, Temel Y.

Turk Neurosurg. 2013;23(5):658-65. doi: 10.5137/1019-5149.JTN.8328-13.0.

8.

Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla.

Nölte IS, Gerigk L, Al-Zghloul M, Groden C, Kerl HU.

Acta Neurochir (Wien). 2012 Mar;154(3):481-94. doi: 10.1007/s00701-011-1242-8. Epub 2011 Dec 14.

PMID:
22167532
9.

Clinical outcome of subthalamic stimulation in Parkinson's disease is improved by intraoperative multiple trajectories microelectrode recording.

Reck C, Maarouf M, Wojtecki L, Groiss SJ, Florin E, Sturm V, Fink GR, Schnitzler A, Timmermann L.

J Neurol Surg A Cent Eur Neurosurg. 2012 Nov;73(6):377-86. doi: 10.1055/s-0032-1326957. Epub 2012 Oct 5.

PMID:
23042143
10.

Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus.

Schlaier JR, Habermeyer C, Warnat J, Lange M, Janzen A, Hochreiter A, Proescholdt M, Brawanski A, Fellner C.

Acta Neurochir (Wien). 2011 Dec;153(12):2307-18. doi: 10.1007/s00701-011-1081-7. Epub 2011 Jul 9.

PMID:
21744142
11.

Susceptibility-enhanced 3-Tesla T1-weighted spoiled gradient echo of the midbrain nuclei for guidance of deep brain stimulation implantation.

Young GS, Feng F, Shen H, Chen NK.

Neurosurgery. 2009 Oct;65(4):809-15. doi: 10.1227/01.NEU.0000345354.21320.D1.

PMID:
19834387
12.

Subthalamic nucleus stimulation in Parkinson's disease: postoperative CT-MRI fusion images confirm accuracy of electrode placement using intraoperative multi-unit recording.

Shin M, Lefaucheur JP, Penholate MF, Brugières P, Gurruchaga JM, Nguyen JP.

Neurophysiol Clin. 2007 Dec;37(6):457-66. Epub 2007 Oct 11.

PMID:
18083502
13.

Assessment of the variability in the anatomical position and size of the subthalamic nucleus among patients with advanced Parkinson's disease using magnetic resonance imaging.

Daniluk S, G Davies K, Ellias SA, Novak P, Nazzaro JM.

Acta Neurochir (Wien). 2010 Feb;152(2):201-10; discussion 210. doi: 10.1007/s00701-009-0514-z. Epub 2009 Oct 6.

PMID:
19806309
14.

Comparison of different targeting methods for subthalamic nucleus deep brain stimulation.

Guo T, Finnis KW, Deoni SC, Parrent AG, Peters TM.

Med Image Comput Comput Assist Interv. 2006;9(Pt 1):768-75.

PMID:
17354960
15.

Deep brain stimulation of the internal globus pallidus in dystonia: target localisation under general anaesthesia.

Pinsker MO, Volkmann J, Falk D, Herzog J, Steigerwald F, Deuschl G, Mehdorn HM.

Acta Neurochir (Wien). 2009 Jul;151(7):751-8. doi: 10.1007/s00701-009-0375-5. Epub 2009 May 26.

PMID:
19468677
16.

Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation.

Guo T, Parrent AG, Peters TM.

Comput Aided Surg. 2007 Nov;12(6):325-34.

PMID:
18066948
17.

The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation.

Kerl HU, Gerigk L, Pechlivanis I, Al-Zghloul M, Groden C, Nölte IS.

Acta Neurochir (Wien). 2012 Nov;154(11):2051-62. doi: 10.1007/s00701-012-1476-0. Epub 2012 Aug 29.

PMID:
22930282
18.

Improving targeting in image-guided frame-based deep brain stimulation.

Holl EM, Petersen EA, Foltynie T, Martinez-Torres I, Limousin P, Hariz MI, Zrinzo L.

Neurosurgery. 2010 Dec;67(2 Suppl Operative):437-47. doi: 10.1227/NEU.0b013e3181f7422a.

PMID:
21099570
19.

Characterization of hyperintense nodules on T1-weighted liver magnetic resonance imaging: comparison of Ferucarbotran-enhanced MRI with accumulation-phase FS-T1WI and gadolinium-enhanced MRI.

Chou CT, Chen RC, Chen WT, Lii JM.

J Chin Med Assoc. 2011 Feb;74(2):62-8. doi: 10.1016/j.jcma.2011.01.013. Epub 2011 Feb 12.

PMID:
21354082
20.

Susceptibility-weighted imaging of the brain: does gadolinium administration matter?

El-Koussy M, Schenk P, Kiefer C, Osman OM, Mordasini P, Ozdoba C, Schroth G, Gönner F.

Eur J Radiol. 2012 Feb;81(2):272-6. doi: 10.1016/j.ejrad.2010.12.021. Epub 2011 Jan 7.

PMID:
21216124
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk