Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 90

Similar articles for PubMed (Select 24828128)

1.

Addition of visual noise boosts evoked potential-based brain-computer interface.

Xie J, Xu G, Wang J, Zhang S, Zhang F, Li Y, Han C, Li L.

Sci Rep. 2014 May 14;4:4953. doi: 10.1038/srep04953.

2.

A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).

Hwang HJ, Hwan Kim D, Han CH, Im CH.

Brain Res. 2013 Jun 17;1515:66-77. doi: 10.1016/j.brainres.2013.03.050. Epub 2013 Apr 13.

PMID:
23587933
3.

On the control of brain-computer interfaces by users with cerebral palsy.

Daly I, Billinger M, Laparra-Hernández J, Aloise F, García ML, Faller J, Scherer R, Müller-Putz G.

Clin Neurophysiol. 2013 Sep;124(9):1787-97. doi: 10.1016/j.clinph.2013.02.118. Epub 2013 May 16.

PMID:
23684128
4.

A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials.

Jin J, Allison BZ, Wang X, Neuper C.

J Neurosci Methods. 2012 Apr 15;205(2):265-76. doi: 10.1016/j.jneumeth.2012.01.004. Epub 2012 Jan 16.

PMID:
22269596
5.

Steady-state motion visual evoked potentials produced by oscillating Newton's rings: implications for brain-computer interfaces.

Xie J, Xu G, Wang J, Zhang F, Zhang Y.

PLoS One. 2012;7(6):e39707. doi: 10.1371/journal.pone.0039707. Epub 2012 Jun 19.

6.

Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces.

Cao T, Wan F, Wong CM, da Cruz JN, Hu Y.

Biomed Eng Online. 2014 Mar 12;13(1):28. doi: 10.1186/1475-925X-13-28.

7.

Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.

Baek HJ, Kim HS, Heo J, Lim YG, Park KS.

J Neural Eng. 2013 Apr;10(2):024001. doi: 10.1088/1741-2560/10/2/024001. Epub 2013 Feb 28.

PMID:
23448913
8.

Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

Hill NJ, Gupta D, Brunner P, Gunduz A, Adamo MA, Ritaccio A, Schalk G.

J Vis Exp. 2012 Jun 26;(64). pii: 3993. doi: 10.3791/3993.

9.

A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.

Brunner C, Allison BZ, Altstätter C, Neuper C.

J Neural Eng. 2011 Apr;8(2):025010. doi: 10.1088/1741-2560/8/2/025010. Epub 2011 Mar 24.

PMID:
21436538
10.

An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.

Hill NJ, Schölkopf B.

J Neural Eng. 2012 Apr;9(2):026011. doi: 10.1088/1741-2560/9/2/026011. Epub 2012 Feb 15.

11.

Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).

Lim JH, Hwang HJ, Han CH, Jung KY, Im CH.

J Neural Eng. 2013 Apr;10(2):026021. doi: 10.1088/1741-2560/10/2/026021. Epub 2013 Mar 26. Erratum in: J Neural Eng. 2013 Jun;10(3):049501.

PMID:
23528484
12.

Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli.

Yoshimura N, Itakura N.

Electromyogr Clin Neurophysiol. 2008 Jan-Feb;48(1):43-51.

PMID:
18338534
13.

An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation.

Tonin L, Leeb R, Sobolewski A, Millán Jdel R.

J Neural Eng. 2013 Oct;10(5):056007. doi: 10.1088/1741-2560/10/5/056007. Epub 2013 Aug 5.

PMID:
23918205
14.

A comparison of two spelling Brain-Computer Interfaces based on visual P3 and SSVEP in Locked-In Syndrome.

Combaz A, Chatelle C, Robben A, Vanhoof G, Goeleven A, Thijs V, Van Hulle MM, Laureys S.

PLoS One. 2013 Sep 25;8(9):e73691. doi: 10.1371/journal.pone.0073691. eCollection 2013.

15.

An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method.

Bin G, Gao X, Yan Z, Hong B, Gao S.

J Neural Eng. 2009 Aug;6(4):046002. doi: 10.1088/1741-2560/6/4/046002. Epub 2009 Jun 3.

PMID:
19494422
16.

Toward a hybrid brain-computer interface based on imagined movement and visual attention.

Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G.

J Neural Eng. 2010 Apr;7(2):26007. doi: 10.1088/1741-2560/7/2/026007. Epub 2010 Mar 23.

PMID:
20332550
17.

Towards an independent brain-computer interface using steady state visual evoked potentials.

Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR.

Clin Neurophysiol. 2008 Feb;119(2):399-408.

18.

Brain-computer interface based on intermodulation frequency.

Chen X, Chen Z, Gao S, Gao X.

J Neural Eng. 2013 Dec;10(6):066009. doi: 10.1088/1741-2560/10/6/066009. Epub 2013 Oct 18.

PMID:
24140740
19.

The hybrid BCI.

Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R, Zander TO, Mueller-Putz G, Neuper C, Birbaumer N.

Front Neurosci. 2010 Apr 21;4:30. doi: 10.3389/fnpro.2010.00003. eCollection 2010.

20.

Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.

Marchetti M, Piccione F, Silvoni S, Gamberini L, Priftis K.

Neurorehabil Neural Repair. 2013 Jun;27(5):430-8. doi: 10.1177/1545968312471903. Epub 2013 Jan 25.

PMID:
23353184
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk