Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model.

Astashkina AI, Jones CF, Thiagarajan G, Kurtzeborn K, Ghandehari H, Brooks BD, Grainger DW.

Biomaterials. 2014 Aug;35(24):6323-31. doi: 10.1016/j.biomaterials.2014.04.060. Epub 2014 May 10.

PMID:
24814424
2.

Comparing predictive drug nephrotoxicity biomarkers in kidney 3-D primary organoid culture and immortalized cell lines.

Astashkina AI, Mann BK, Prestwich GD, Grainger DW.

Biomaterials. 2012 Jun;33(18):4712-21. doi: 10.1016/j.biomaterials.2012.03.001. Epub 2012 Apr 2. Erratum in: Biomaterials. 2015 Jan;38:108.

PMID:
22475530
3.

A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays.

Astashkina AI, Mann BK, Prestwich GD, Grainger DW.

Biomaterials. 2012 Jun;33(18):4700-11. doi: 10.1016/j.biomaterials.2012.02.063. Epub 2012 Mar 22.

PMID:
22444643
4.

Characterizing the interactions of organic nanoparticles with renal epithelial cells in vivo.

Nair AV, Keliher EJ, Core AB, Brown D, Weissleder R.

ACS Nano. 2015;9(4):3641-53. doi: 10.1021/acsnano.5b00428. Epub 2015 Mar 26.

5.

Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.

Sayes CM, Reed KL, Warheit DB.

Toxicol Sci. 2007 May;97(1):163-80. Epub 2007 Feb 14.

6.

Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.

Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE.

Integr Biol (Camb). 2013 Sep;5(9):1119-29. doi: 10.1039/c3ib40049b.

PMID:
23644926
7.

Toxicity of PAMAM-coated gold nanoparticles in different unicellular models.

Perreault F, Melegari SP, Fuzinatto CF, Bogdan N, Morin M, Popovic R, Matias WG.

Environ Toxicol. 2014 Mar;29(3):328-36. doi: 10.1002/tox.21761. Epub 2012 Feb 13.

PMID:
22331655
8.

Evaluation of putative biomarkers of nephrotoxicity after exposure to ochratoxin a in vivo and in vitro.

Rached E, Hoffmann D, Blumbach K, Weber K, Dekant W, Mally A.

Toxicol Sci. 2008 Jun;103(2):371-81. doi: 10.1093/toxsci/kfn040. Epub 2008 Feb 27.

9.

Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish.

Pryor JB, Harper BJ, Harper SL.

Int J Nanomedicine. 2014 Apr 17;9:1947-56. doi: 10.2147/IJN.S60220. eCollection 2014.

10.

Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo.

Navarro G, Tros de Ilarduya C.

Nanomedicine. 2009 Sep;5(3):287-97. doi: 10.1016/j.nano.2008.12.007. Epub 2009 Jan 19.

PMID:
19523431
11.

In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells.

Sohn SJ, Kim SY, Kim HS, Chun YJ, Han SY, Kim SH, Moon A.

Toxicol Lett. 2013 Mar 13;217(3):235-42. doi: 10.1016/j.toxlet.2012.12.015. Epub 2012 Dec 31.

PMID:
23287709
12.

Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines.

Vetten MA, Tlotleng N, Tanner Rascher D, Skepu A, Keter FK, Boodhia K, Koekemoer LA, Andraos C, Tshikhudo R, Gulumian M.

Part Fibre Toxicol. 2013 Oct 9;10:50. doi: 10.1186/1743-8977-10-50.

13.

Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications.

Peng C, Li K, Cao X, Xiao T, Hou W, Zheng L, Guo R, Shen M, Zhang G, Shi X.

Nanoscale. 2012 Nov 7;4(21):6768-78. doi: 10.1039/c2nr31687k. Epub 2012 Sep 26.

PMID:
23010987
14.

Cell- and biomarker-based assays for predicting nephrotoxicity.

Huang JX, Blaskovich MA, Cooper MA.

Expert Opin Drug Metab Toxicol. 2014 Dec;10(12):1621-35. doi: 10.1517/17425255.2014.967681. Epub 2014 Nov 10. Review.

PMID:
25382677
15.

Gentamicin nephrotoxicity--a comparison of in vitro findings with in vivo experiments in equines.

van der Harst MR, Bull S, Laffont CM, Klein WR.

Vet Res Commun. 2005 Apr;29(3):247-61.

PMID:
15736857
16.

Renal proximal tubular cells in suspension or in primary culture as in vitro models to study nephrotoxicity.

Boogaard PJ, Nagelkerke JF, Mulder GJ.

Chem Biol Interact. 1990;76(3):251-91. Review.

PMID:
2225232
17.

Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments.

Astashkina A, Grainger DW.

Adv Drug Deliv Rev. 2014 Apr;69-70:1-18. doi: 10.1016/j.addr.2014.02.008. Epub 2014 Mar 5. Review.

PMID:
24613390
18.

In vivo toxicity evaluation of gold-dendrimer composite nanodevices with different surface charges.

Kasturirangan V, Nair BM, Kariapper MT, Lesniak WG, Tan W, Bizimungu R, Kanter P, Toth K, Buitrago S, Rustum YM, Hutson A, Balogh LP, Khan MK.

Nanotoxicology. 2013 Jun;7(4):441-51. doi: 10.3109/17435390.2012.668570. Epub 2012 Mar 20.

PMID:
22394369
19.

Heat shock proteins and acquired resistance to uranium nephrotoxicity.

Tolson JK, Roberts SM, Jortner B, Pomeroy M, Barber DS.

Toxicology. 2005 Jan 5;206(1):59-73.

PMID:
15590109
20.

Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer.

Li K, Wen S, Larson AC, Shen M, Zhang Z, Chen Q, Shi X, Zhang G.

Int J Nanomedicine. 2013;8:2589-600. doi: 10.2147/IJN.S46177. Epub 2013 Jul 19.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk