Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 97

1.

Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen.

Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X.

Science. 2014 May 9;344(6184):616-9. doi: 10.1126/science.1253150.

PMID:
24812398
[PubMed]
2.

Methane activation by diatomic molybdenum carbide cations.

Li ZY, Yuan Z, Zhao YX, He SG.

Chemistry. 2014 Apr 1;20(14):4163-9. doi: 10.1002/chem.201304042. Epub 2014 Feb 25.

PMID:
24615820
[PubMed - in process]
3.

Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.

Vedernikov AN.

Acc Chem Res. 2012 Jun 19;45(6):803-13. doi: 10.1021/ar200191k. Epub 2011 Nov 16.

PMID:
22087633
[PubMed]
4.

Methyl radicals in oxidative coupling of methane directly confirmed by synchrotron VUV photoionization mass spectroscopy.

Luo L, Tang X, Wang W, Wang Y, Sun S, Qi F, Huang W.

Sci Rep. 2013;3:1625. doi: 10.1038/srep01625.

PMID:
23567985
[PubMed]
Free PMC Article
5.

Catalytic conversion of methane to methanol using Cu-zeolites.

Alayon EM, Nachtegaal M, Ranocchiari M, van Bokhoven JA.

Chimia (Aarau). 2012;66(9):668-74. doi: 10.2533/chimia.2012.668.

PMID:
23211724
[PubMed - indexed for MEDLINE]
6.

Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.

Han JW, Kim C, Park JS, Lee H.

ChemSusChem. 2014 Feb;7(2):451-6. doi: 10.1002/cssc.201301134. Epub 2014 Jan 8.

PMID:
24402833
[PubMed - in process]
7.

Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.

Laycock CJ, Staniforth JZ, Ormerod RM.

Dalton Trans. 2011 May 28;40(20):5494-504. doi: 10.1039/c0dt01373k. Epub 2011 Apr 14.

PMID:
21494706
[PubMed - indexed for MEDLINE]
8.

Sulfur as a selective 'soft' oxidant for catalytic methane conversion probed by experiment and theory.

Zhu Q, Wegener SL, Xie C, Uche O, Neurock M, Marks TJ.

Nat Chem. 2013 Feb;5(2):104-9. doi: 10.1038/nchem.1527. Epub 2012 Dec 16.

PMID:
23344430
[PubMed - indexed for MEDLINE]
9.

Conversion of methane into C1 oxygenates by deep-UV photolysis on solid surfaces: influence of the nature of the solid and optimization of photolysis conditions.

Sastre F, Fornés V, Corma A, García H.

Chemistry. 2012 Feb 6;18(6):1820-5. doi: 10.1002/chem.201102273. Epub 2012 Jan 3.

PMID:
22223585
[PubMed]
10.

Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.

Sharma PK, De Visser SP, Ogliaro F, Shaik S.

J Am Chem Soc. 2003 Feb 26;125(8):2291-300.

PMID:
12590559
[PubMed - indexed for MEDLINE]
11.

Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction.

Hashiguchi BG, Bischof SM, Konnick MM, Periana RA.

Acc Chem Res. 2012 Jun 19;45(6):885-98. doi: 10.1021/ar200250r. Epub 2012 Apr 6.

PMID:
22482496
[PubMed]
12.

Coke formation and carbon atom economy of methanol-to-olefins reaction.

Wei Y, Yuan C, Li J, Xu S, Zhou Y, Chen J, Wang Q, Xu L, Qi Y, Zhang Q, Liu Z.

ChemSusChem. 2012 May;5(5):906-12. doi: 10.1002/cssc.201100528. Epub 2012 Feb 22.

PMID:
22359363
[PubMed - indexed for MEDLINE]
13.

Selective homogeneous and heterogeneous catalytic conversion of methanol/dimethyl ether to triptane.

Hazari N, Iglesia E, Labinger JA, Simonetti DA.

Acc Chem Res. 2012 Apr 17;45(4):653-62. doi: 10.1021/ar2002528. Epub 2012 Jan 25.

PMID:
22277056
[PubMed]
14.
15.

Methane from benzene in argon dielectric barrier discharge.

Das TN, Dey GR.

J Hazard Mater. 2013 Mar 15;248-249:469-77. doi: 10.1016/j.jhazmat.2013.01.028. Epub 2013 Feb 1.

PMID:
23419905
[PubMed - indexed for MEDLINE]
16.
17.

Selective, room-temperature transformation of methane to C1 oxygenates by deep UV photolysis over zeolites.

Sastre F, Fornés V, Corma A, García H.

J Am Chem Soc. 2011 Nov 2;133(43):17257-61. doi: 10.1021/ja204559z. Epub 2011 Oct 11.

PMID:
21939273
[PubMed - indexed for MEDLINE]
18.

Direct conversion of methane to higher hydrocarbons using AlBr3-HBr superacid catalyst.

Vasireddy S, Ganguly S, Sauer J, Cook W, Spivey JJ.

Chem Commun (Camb). 2011 Jan 14;47(2):785-7. doi: 10.1039/c0cc01886d. Epub 2010 Nov 17.

PMID:
21085725
[PubMed]
19.

Methane to ethylene with 85 percent yield in a gas recycle electrocatalytic reactor-separator.

Jiang Y, Yentekakis IV, Vayenas CG.

Science. 1994 Jun 10;264(5165):1563-6.

PMID:
17769598
[PubMed]
20.

Engineering the reactivity of metal catalysts: a model study of methane dehydrogenation on Rh(111).

Kokalj A, Bonini N, Sbraccia C, de Gironcoli S, Baroni S.

J Am Chem Soc. 2004 Dec 29;126(51):16732-3.

PMID:
15612705
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk