Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 258

1.
2.

Infrared Detection of a Proton Released from Tyrosine YD to the Bulk upon Its Photo-oxidation in Photosystem II.

Nakamura S, Noguchi T.

Biochemistry. 2015 Aug 18;54(32):5045-53. doi: 10.1021/acs.biochem.5b00568. Epub 2015 Aug 7.

PMID:
26241205
3.

Role of D1-His190 in the proton-coupled oxidation of tyrosine YZ in manganese-depleted photosystem II.

Hays AM, Vassiliev IR, Golbeck JH, Debus RJ.

Biochemistry. 1999 Sep 14;38(37):11851-65.

PMID:
10508388
4.

Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study.

Nakamura S, Ota K, Shibuya Y, Noguchi T.

Biochemistry. 2016 Jan 26;55(3):597-607. doi: 10.1021/acs.biochem.5b01120. Epub 2016 Jan 12.

PMID:
26716470
5.

Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving Mn4CaO5 cluster of photosystem II.

Debus RJ.

Biochemistry. 2014 May 13;53(18):2941-55. doi: 10.1021/bi500309f. Epub 2014 Apr 23.

PMID:
24730551
6.

Role of D1-His190 in proton-coupled electron transfer reactions in photosystem II: a chemical complementation study.

Hays AM, Vassiliev IR, Golbeck JH, Debus RJ.

Biochemistry. 1998 Aug 11;37(32):11352-65.

PMID:
9698383
9.

Water molecules coupled to the redox-active tyrosine Y(D) in photosystem II as detected by FTIR spectroscopy.

Takahashi R, Sugiura M, Noguchi T.

Biochemistry. 2007 Dec 11;46(49):14245-9. Epub 2007 Nov 13.

PMID:
17997583
10.

Low-barrier hydrogen bond plays key role in active photosystem II--a new model for photosynthetic water oxidation.

Zhang C.

Biochim Biophys Acta. 2007 Jun;1767(6):493-9. Epub 2006 Dec 23. Review.

11.

Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation.

Noguchi T.

Biochim Biophys Acta. 2015 Jan;1847(1):35-45. doi: 10.1016/j.bbabio.2014.06.009. Epub 2014 Jul 3. Review.

12.

Proton-coupled electron-transfer processes in photosystem II probed by highly resolved g-anisotropy of redox-active tyrosine YZ.

Matsuoka H, Shen JR, Kawamori A, Nishiyama K, Ohba Y, Yamauchi S.

J Am Chem Soc. 2011 Mar 30;133(12):4655-60. doi: 10.1021/ja2000566. Epub 2011 Mar 7.

PMID:
21381752
14.

Molecular origin of the pH dependence of tyrosine D oxidation kinetics and radical stability in photosystem II.

Hienerwadel R, Diner BA, Berthomieu C.

Biochim Biophys Acta. 2008 Jun;1777(6):525-31. doi: 10.1016/j.bbabio.2008.04.004. Epub 2008 Apr 10.

15.

Glutamate 189 of the D1 polypeptide modulates the magnetic and redox properties of the manganese cluster and tyrosine Y(Z) in photosystem II.

Debus RJ, Campbell KA, Pham DP, Hays AM, Britt RD.

Biochemistry. 2000 May 30;39(21):6275-87.

PMID:
10828940
17.

Redox control and hydrogen bonding networks: proton-coupled electron transfer reactions and tyrosine Z in the photosynthetic oxygen-evolving complex.

Keough JM, Zuniga AN, Jenson DL, Barry BA.

J Phys Chem B. 2013 Feb 7;117(5):1296-307. doi: 10.1021/jp3118314. Epub 2013 Jan 24.

PMID:
23346921
18.

Hydrogen bonding of redox-active tyrosine Z of photosystem II probed by FTIR difference spectroscopy.

Berthomieu C, Hienerwadel R, Boussac A, Breton J, Diner BA.

Biochemistry. 1998 Jul 28;37(30):10547-54.

PMID:
9692943
19.
20.

High-frequency electron nuclear double-resonance spectroscopy studies of the mechanism of proton-coupled electron transfer at the tyrosine-D residue of photosystem II.

Chatterjee R, Coates CS, Milikisiyants S, Lee CI, Wagner A, Poluektov OG, Lakshmi KV.

Biochemistry. 2013 Jul 16;52(28):4781-90. doi: 10.1021/bi3012093. Epub 2013 Jul 1.

PMID:
23773007
Items per page

Supplemental Content

Write to the Help Desk