Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.
2.

Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends.

Zhou C, Ma L, Li W, Yao D.

Biofabrication. 2011 Dec;3(4):045003. doi: 10.1088/1758-5082/3/4/045003. Epub 2011 Sep 9.

3.
4.

Thermally produced biodegradable scaffolds for cartilage tissue engineering.

Lee SH, Kim BS, Kim SH, Kang SW, Kim YH.

Macromol Biosci. 2004 Aug 9;4(8):802-10.

PMID:
15468274
5.

Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique.

Ji C, Annabi N, Hosseinkhani M, Sivaloganathan S, Dehghani F.

Acta Biomater. 2012 Feb;8(2):570-8. doi: 10.1016/j.actbio.2011.09.028. Epub 2011 Sep 28.

PMID:
21996623
6.

Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.

Chung EJ, Sugimoto M, Koh JL, Ameer GA.

Tissue Eng Part C Methods. 2012 Feb;18(2):113-21. doi: 10.1089/ten.TEC.2011.0289. Epub 2011 Dec 22.

PMID:
21933018
8.

Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.

Johnson T, Bahrampourian R, Patel A, Mequanint K.

Biomed Mater Eng. 2010;20(2):107-18. doi: 10.3233/BME-2010-0621.

PMID:
20592448
9.

Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.

Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, Morgan SP, Chandra A, Williams DJ, Howdle SM, Shakesheff KM.

Eur Cell Mater. 2007 Dec 17;14:64-77.

10.

Design of porous polymeric scaffolds by gas foaming of heterogeneous blends.

Salerno A, Oliviero M, Di Maio E, Iannace S, Netti PA.

J Mater Sci Mater Med. 2009 Oct;20(10):2043-51. doi: 10.1007/s10856-009-3767-4. Epub 2009 May 9.

PMID:
19430895
11.

Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds.

Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ.

Biomaterials. 2003 Jan;24(1):181-94.

PMID:
12417192
12.

Improving pore interconnectivity in polymeric scaffolds for tissue engineering.

Aydin HM, El Haj AJ, Pi┼čkin E, Yang Y.

J Tissue Eng Regen Med. 2009 Aug;3(6):470-6. doi: 10.1002/term.187.

PMID:
19530258
14.
15.

An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.

Kramschuster A, Turng LS.

J Biomed Mater Res B Appl Biomater. 2010 Feb;92(2):366-76. doi: 10.1002/jbm.b.31523.

PMID:
19957359
16.

A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.

Kim SS, Ahn KM, Park MS, Lee JH, Choi CY, Kim BS.

J Biomed Mater Res A. 2007 Jan;80(1):206-15.

PMID:
17072849
17.

Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications.

Kang HG, Kim SY, Lee YM.

J Biomed Mater Res B Appl Biomater. 2006 Nov;79(2):388-97.

PMID:
16767729
18.

The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering.

White LJ, Hutter V, Tai H, Howdle SM, Shakesheff KM.

Acta Biomater. 2012 Jan;8(1):61-71. doi: 10.1016/j.actbio.2011.07.032. Epub 2011 Aug 2.

19.

Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility.

Lee HY, Jin GZ, Shin US, Kim JH, Kim HW.

J Mater Sci Mater Med. 2012 May;23(5):1271-9. doi: 10.1007/s10856-012-4588-4. Epub 2012 Mar 2.

PMID:
22382734
20.

Systematic investigation of porogen size and content on scaffold morphometric parameters and properties.

Lin-Gibson S, Cooper JA, Landis FA, Cicerone MT.

Biomacromolecules. 2007 May;8(5):1511-8. Epub 2007 Mar 24.

PMID:
17381151
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk