Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 85

1.

Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography.

Nadler Z, Wang B, Wollstein G, Nevins JE, Ishikawa H, Bilonick R, Kagemann L, Sigal IA, Ferguson RD, Patel A, Hammer DX, Schuman JS.

Biomed Opt Express. 2014 Mar 10;5(4):1114-23. doi: 10.1364/BOE.5.001114. eCollection 2014 Apr 1.

PMID:
24761293
[PubMed]
Free PMC Article
2.

Reproducibility of in-vivo OCT measured three-dimensional human lamina cribrosa microarchitecture.

Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H, Bilonick RA, Kagemann L, Sigal IA, Grulkowski I, Liu JJ, Kraus M, Lu CD, Hornegger J, Fujimoto JG, Schuman JS.

PLoS One. 2014 Apr 18;9(4):e95526. doi: 10.1371/journal.pone.0095526. eCollection 2014.

PMID:
24747957
[PubMed - in process]
Free PMC Article
3.

In Vivo Three-Dimensional Characterization of the Healthy Human Lamina Cribrosa with Adaptive Optics Spectral-Domain Optical Coherence Tomography.

Nadler Z, Wang B, Schuman JS, Ferguson RD, Patel A, Hammer DX, Bilonick RA, Ishikawa H, Kagemann L, Sigal IA, Wollstein G.

Invest Ophthalmol Vis Sci. 2014 Sep 16. pii: IOVS-14-15177. doi: 10.1167/iovs.14-15177. [Epub ahead of print]

PMID:
25228539
[PubMed - as supplied by publisher]
4.

Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes.

Nadler Z, Wang B, Wollstein G, Nevins JE, Ishikawa H, Kagemann L, Sigal IA, Ferguson RD, Hammer DX, Grulkowski I, Liu JJ, Kraus MF, Lu CD, Hornegger J, Fujimoto JG, Schuman JS.

Biomed Opt Express. 2013 Oct 24;4(11):2596-608. doi: 10.1364/BOE.4.002596. eCollection 2013.

PMID:
24298418
[PubMed]
Free PMC Article
5.

Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.

Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, Yoshimura N.

Ophthalmology. 2009 Feb;116(2):214-22. doi: 10.1016/j.ophtha.2008.09.008. Epub 2008 Dec 16.

PMID:
19091413
[PubMed - indexed for MEDLINE]
6.

Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography.

Yoshikawa M, Akagi T, Hangai M, Ohashi-Ikeda H, Takayama K, Morooka S, Kimura Y, Nakano N, Yoshimura N.

Invest Ophthalmol Vis Sci. 2014 Jan 23;55(1):477-84. doi: 10.1167/iovs.13-11897.

PMID:
24398100
[PubMed - indexed for MEDLINE]
7.

Comparison of retinal nerve fiber layer thickness measurement bias and imprecision across three spectral-domain optical coherence tomography devices.

Buchser NM, Wollstein G, Ishikawa H, Bilonick RA, Ling Y, Folio LS, Kagemann L, Noecker RJ, Albeiruti E, Schuman JS.

Invest Ophthalmol Vis Sci. 2012 Jun 20;53(7):3742-7. doi: 10.1167/iovs.11-8432.

PMID:
22538423
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes.

Sredar N, Ivers KM, Queener HM, Zouridakis G, Porter J.

Biomed Opt Express. 2013 Jun 14;4(7):1153-65. doi: 10.1364/BOE.4.001153. Print 2013 Jul 1.

PMID:
23847739
[PubMed]
Free PMC Article
9.

Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma.

Lee EJ, Kim TW, Weinreb RN, Suh MH, Kang M, Park KH, Kim SH, Kim DM.

Invest Ophthalmol Vis Sci. 2012 Jan 20;53(1):198-204. doi: 10.1167/iovs.11-7848.

PMID:
22167102
[PubMed - indexed for MEDLINE]
Free Article
10.

Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography.

Takayama K, Hangai M, Kimura Y, Morooka S, Nukada M, Akagi T, Ikeda HO, Matsumoto A, Yoshimura N.

Invest Ophthalmol Vis Sci. 2013 Jul 18;54(7):4798-807. doi: 10.1167/iovs.13-11677.

PMID:
23778878
[PubMed - indexed for MEDLINE]
Free Article
11.

Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons.

Furlanetto RL, Park SC, Damle UJ, Sieminski SF, Kung Y, Siegal N, Liebmann JM, Ritch R.

Invest Ophthalmol Vis Sci. 2013 Jul 18;54(7):4836-42. doi: 10.1167/iovs.12-11530.

PMID:
23778876
[PubMed - indexed for MEDLINE]
Free Article
12.

High resolution in vivo imaging of the lamina cribrosa.

Park SC, Ritch R.

Saudi J Ophthalmol. 2011 Oct;25(4):363-72. doi: 10.1016/j.sjopt.2011.07.007. Epub 2011 May 8.

PMID:
23960950
[PubMed]
Free PMC Article
13.

Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging.

Kim S, Sung KR, Lee JR, Lee KS.

Ophthalmology. 2013 Sep;120(9):1798-803. doi: 10.1016/j.ophtha.2013.02.015. Epub 2013 Apr 25.

PMID:
23622874
[PubMed - indexed for MEDLINE]
14.

Imaging of the lamina cribrosa in glaucoma: perspectives of pathogenesis and clinical applications.

Kim TW, Kagemann L, Girard MJ, Strouthidis NG, Sung KR, Leung CK, Schuman JS, Wollstein G.

Curr Eye Res. 2013 Sep;38(9):903-9. Review.

PMID:
23768229
[PubMed - indexed for MEDLINE]
15.

Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging.

Ivers KM, Li C, Patel N, Sredar N, Luo X, Queener H, Harwerth RS, Porter J.

Invest Ophthalmol Vis Sci. 2011 Jul 23;52(8):5473-80. doi: 10.1167/iovs.11-7347.

PMID:
21546533
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

Factors associated with focal lamina cribrosa defects in glaucoma.

Park SC, Hsu AT, Su D, Simonson JL, Al-Jumayli M, Liu Y, Liebmann JM, Ritch R.

Invest Ophthalmol Vis Sci. 2013 Dec 30;54(13):8401-7. doi: 10.1167/iovs.13-13014.

PMID:
24255039
[PubMed - indexed for MEDLINE]
17.

Improved reproducibility in measuring the laminar thickness on enhanced depth imaging SD-OCT images using maximum intensity projection.

Lee EJ, Kim TW, Weinreb RN.

Invest Ophthalmol Vis Sci. 2012 Nov 9;53(12):7576-82. doi: 10.1167/iovs.12-10305.

PMID:
23074212
[PubMed - indexed for MEDLINE]
Free Article
18.

Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT.

Töteberg-Harms M, Sturm V, Knecht PB, Funk J, Menke MN.

Graefes Arch Clin Exp Ophthalmol. 2012 Feb;250(2):279-87. doi: 10.1007/s00417-011-1811-9. Epub 2011 Sep 10.

PMID:
21909812
[PubMed - indexed for MEDLINE]
19.

Ultrahigh-resolution spectral domain optical coherence tomography imaging of the lamina cribrosa.

Kagemann L, Ishikawa H, Wollstein G, Brennen PM, Townsend KA, Gabriele ML, Schuman JS.

Ophthalmic Surg Lasers Imaging. 2008 Jul-Aug;39(4 Suppl):S126-131.

PMID:
18777881
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

Extended depth of focus adaptive optics spectral domain optical coherence tomography.

Sasaki K, Kurokawa K, Makita S, Yasuno Y.

Biomed Opt Express. 2012 Oct 1;3(10):2353-70. doi: 10.1364/BOE.3.002353. Epub 2012 Sep 4.

PMID:
23082278
[PubMed]
Free PMC Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk