Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 104

Related Citations for PubMed (Select 24752079)

1.

Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells.

Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA.

Nat Biotechnol. 2014 Jul;32(7):670-6. doi: 10.1038/nbt.2889. Epub 2014 Apr 20.

2.

Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.

Kuscu C, Arslan S, Singh R, Thorpe J, Adli M.

Nat Biotechnol. 2014 Jul;32(7):677-83. doi: 10.1038/nbt.2916. Epub 2014 May 18.

PMID:
24837660
3.

Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage.

Cencic R, Miura H, Malina A, Robert F, Ethier S, Schmeing TM, Dostie J, Pelletier J.

PLoS One. 2014 Oct 2;9(10):e109213. doi: 10.1371/journal.pone.0109213. eCollection 2014.

4.

Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.

Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS.

Genome Res. 2014 Jan;24(1):132-41. doi: 10.1101/gr.162339.113. Epub 2013 Nov 19.

5.

DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA.

Nature. 2014 Mar 6;507(7490):62-7. doi: 10.1038/nature13011. Epub 2014 Jan 29.

6.

CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences.

Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G.

Nucleic Acids Res. 2014 Jun;42(11):7473-85. doi: 10.1093/nar/gku402. Epub 2014 May 16.

7.

Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects.

Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC.

Nat Methods. 2014 Apr;11(4):399-402. doi: 10.1038/nmeth.2857. Epub 2014 Mar 2.

PMID:
24584192
8.

Programmable RNA recognition and cleavage by CRISPR/Cas9.

O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA.

Nature. 2014 Dec 11;516(7530):263-6. doi: 10.1038/nature13769. Epub 2014 Sep 28.

PMID:
25274302
9.

CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.

Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM.

Nat Biotechnol. 2013 Sep;31(9):833-8. doi: 10.1038/nbt.2675. Epub 2013 Aug 1.

10.

Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.

Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA.

Nucleic Acids Res. 2014 Oct 29;42(19):e147. doi: 10.1093/nar/gku749. Epub 2014 Aug 13.

11.

Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease.

Chen H, Choi J, Bailey S.

J Biol Chem. 2014 May 9;289(19):13284-94. doi: 10.1074/jbc.M113.539726. Epub 2014 Mar 14.

PMID:
24634220
12.

Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum.

Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC.

Nat Methods. 2014 Sep;11(9):915-8. doi: 10.1038/nmeth.3063. Epub 2014 Aug 10.

13.

Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.

Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y.

Development. 2014 Feb;141(3):707-14. doi: 10.1242/dev.099853. Epub 2014 Jan 8.

14.

Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis.

Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA.

Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub 2013 Aug 12.

15.

Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.

Fonfara I, Le Rhun A, Chylinski K, Makarova KS, LĂ©crivain AL, Bzdrenga J, Koonin EV, Charpentier E.

Nucleic Acids Res. 2014 Feb;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub 2013 Nov 22.

16.

RNA-guided genome editing in plants using a CRISPR-Cas system.

Xie K, Yang Y.

Mol Plant. 2013 Nov;6(6):1975-83. doi: 10.1093/mp/sst119. Epub 2013 Aug 17.

PMID:
23956122
17.

More specific CRISPR editing.

de Souza N.

Nat Methods. 2014 Jul;11(7):712. No abstract available.

PMID:
25110782
18.

Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system.

Anton T, Bultmann S, Leonhardt H, Markaki Y.

Nucleus. 2014 Mar-Apr;5(2):163-72. doi: 10.4161/nucl.28488. Epub 2014 Mar 12.

19.

A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture.

O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ.

Nucleic Acids Res. 2015 Feb 20. pii: gkv137. [Epub ahead of print]

20.

Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.

Kennedy EM, Cullen BR.

Virology. 2015 Mar 7. pii: S0042-6822(15)00070-7. doi: 10.1016/j.virol.2015.02.024. [Epub ahead of print] Review.

PMID:
25759096
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk