Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 139

1.

A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues.

Simerman AA, Perone MJ, Gimeno ML, Dumesic DA, Chazenbalk GD.

Expert Opin Biol Ther. 2014 Jul;14(7):917-29. doi: 10.1517/14712598.2014.900538. Epub 2014 Apr 19. Review.

2.

Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.

Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, Chazenbalk G, Aiba S, Dezawa M.

Stem Cells Dev. 2014 Apr 1;23(7):717-28. doi: 10.1089/scd.2013.0473. Epub 2014 Jan 17.

PMID:
24256547
3.

Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy.

Simerman AA, Dumesic DA, Chazenbalk GD.

Clin Transl Med. 2014 May 22;3:12. doi: 10.1186/2001-1326-3-12. eCollection 2014. Review.

4.

Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA, Chazenbalk G.

PLoS One. 2013 Jun 5;8(6):e64752. doi: 10.1371/journal.pone.0064752. Print 2013. Erratum in: PLoS One. 2013;8(7). doi:10.1371/annotation/190d4d01-a63c-4adc-a123-e519ee40a03e.

5.

Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues.

Wakao S, Akashi H, Kushida Y, Dezawa M.

Pathol Int. 2014 Jan;64(1):1-9. doi: 10.1111/pin.12129. Review.

PMID:
24471964
6.

Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine.

Kuroda Y, Dezawa M.

Anat Rec (Hoboken). 2014 Jan;297(1):98-110. doi: 10.1002/ar.22798. Epub 2013 Dec 2. Review.

7.

Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration.

Dezawa M.

Cell Transplant. 2016;25(5):849-61. doi: 10.3727/096368916X690881. Epub 2016 Feb 15.

PMID:
26884346
8.

Current applications of human pluripotent stem cells: possibilities and challenges.

Ho PJ, Yen ML, Yet SF, Yen BL.

Cell Transplant. 2012;21(5):801-14. doi: 10.3727/096368911X627507. Epub 2012 Mar 22. Review.

PMID:
22449556
9.

Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts.

Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, Tanimura Y, Tsuchiyama K, Kikuchi T, Goda M, Nakahata T, Fujiyoshi Y, Dezawa M.

Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9875-80. doi: 10.1073/pnas.1100816108. Epub 2011 May 31.

10.

Isolation of adult human pluripotent stem cells from mesenchymal cell populations and their application to liver damages.

Wakao S, Kitada M, Kuroda Y, Dezawa M.

Methods Mol Biol. 2012;826:89-102. doi: 10.1007/978-1-61779-468-1_8.

PMID:
22167642
11.

Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells.

Wakao S, Kuroda Y, Ogura F, Shigemoto T, Dezawa M.

Cells. 2012 Nov 8;1(4):1045-60. doi: 10.3390/cells1041045.

12.

Regenerative cells for transplantation in hepatic failure.

Ishikawa T, Banas A, Teratani T, Iwaguro H, Ochiya T.

Cell Transplant. 2012;21(2-3):387-99. doi: 10.3727/096368911X605286. Review.

PMID:
22793046
13.

The 'sweet' spot of cellular pluripotency: protein glycosylation in human pluripotent stem cells and its applications in regenerative medicine.

Wang YC, Lin V, Loring JF, Peterson SE.

Expert Opin Biol Ther. 2015 May;15(5):679-87. doi: 10.1517/14712598.2015.1021329. Epub 2015 Mar 3. Review.

PMID:
25736263
14.

The elite and stochastic model for iPS cell generation: multilineage-differentiating stress enduring (Muse) cells are readily reprogrammable into iPS cells.

Wakao S, Kitada M, Dezawa M.

Cytometry A. 2013 Jan;83(1):18-26. doi: 10.1002/cyto.a.22069. Epub 2012 Jun 12. Review.

15.

Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells.

Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M.

Nat Protoc. 2013;8(7):1391-415. doi: 10.1038/nprot.2013.076. Epub 2013 Jun 20.

PMID:
23787896
16.

Reprogrammed cells for disease modeling and regenerative medicine.

Cherry AB, Daley GQ.

Annu Rev Med. 2013;64:277-90. doi: 10.1146/annurev-med-050311-163324. Review.

17.

Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

Stachelscheid H, Wulf-Goldenberg A, Eckert K, Jensen J, Edsbagge J, Björquist P, Rivero M, Strehl R, Jozefczuk J, Prigione A, Adjaye J, Urbaniak T, Bussmann P, Zeilinger K, Gerlach JC.

J Tissue Eng Regen Med. 2013 Sep;7(9):729-41. doi: 10.1002/term.1467. Epub 2012 Mar 21.

PMID:
22438087
18.

Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts.

Liu Q, Zhang RZ, Li D, Cheng S, Yang YH, Tian T, Pan XR.

Cell Reprogram. 2016 Apr;18(2):67-77. doi: 10.1089/cell.2015.0085.

PMID:
27055628
19.

Very small embryonic-like cells in the mirror of regenerative medicine.

Vojnits K, Yang L, Zhan M, Cox C, Li Y.

J Stem Cells. 2014;9(1):1-16. doi: jsc.2014.9.1.1. Review.

PMID:
25158086
20.

Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells.

Lee H, Park J, Forget BG, Gaines P.

Regen Med. 2009 Sep;4(5):759-69. doi: 10.2217/rme.09.46. Review.

PMID:
19761400
Items per page

Supplemental Content

Write to the Help Desk