Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Structural and functional significance of the highly-conserved residues in Mycobacterium tuberculosis acetohydroxyacid synthase.

Baig IA, Moon JY, Kim MS, Koo BS, Yoon MY.

Enzyme Microb Technol. 2014 May 10;58-59:52-9. doi: 10.1016/j.enzmictec.2014.02.009. Epub 2014 Feb 28.

PMID:
24731825
2.

Role of a highly conserved proline-126 in ThDP binding of Mycobacterium tuberculosis acetohydroxyacid synthase.

Baig IA, Gedi V, Lee SC, Koh SH, Yoon MY.

Enzyme Microb Technol. 2013 Sep 10;53(4):243-9. doi: 10.1016/j.enzmictec.2013.05.006. Epub 2013 May 30.

PMID:
23931689
3.

Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase.

Baig IA, Moon JY, Lee SC, Ryoo SW, Yoon MY.

Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1338-50. doi: 10.1016/j.bbapap.2015.05.003. Epub 2015 May 16.

PMID:
25988243
4.

Significant catalytic roles for Glu47 and Gln 110 in all four of the C-C bond-making and -breaking steps of the reactions of acetohydroxyacid synthase II.

Vyazmensky M, Steinmetz A, Meyer D, Golbik R, Barak Z, Tittmann K, Chipman DM.

Biochemistry. 2011 Apr 19;50(15):3250-60. doi: 10.1021/bi102051h. Epub 2011 Mar 23.

PMID:
21370850
5.

Binding and activation of thiamin diphosphate in acetohydroxyacid synthase.

Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hübner G, Barak Z, Chipman DM.

Biochemistry. 2001 Oct 2;40(39):11946-54.

PMID:
11570896
6.

Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I.

Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM.

FEBS J. 2012 Jun;279(11):1967-79. doi: 10.1111/j.1742-4658.2012.08577.x. Epub 2012 Apr 20.

7.

Structural and functional evaluation of three well-conserved serine residues in tobacco acetohydroxyacid synthase.

Yoon MY, Gedi V, Kim J, Park Y, Kim DE, Park EH, Choi JD.

Biochimie. 2010 Jan;92(1):65-70. doi: 10.1016/j.biochi.2009.09.010. Epub 2009 Oct 14.

PMID:
19825392
8.

Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis.

Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM.

Biochemistry. 1996 Dec 17;35(50):16282-91.

PMID:
8973202
9.

Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors.

Pang SS, Duggleby RG, Guddat LW.

J Mol Biol. 2002 Mar 22;317(2):249-62.

PMID:
11902841
10.

Identification of amino acids and domains required for catalytic activity of DPPR synthase, a cell wall biosynthetic enzyme of Mycobacterium tuberculosis.

Huang H, Berg S, Spencer JS, Vereecke D, D'Haeze W, Holsters M, McNeil MR.

Microbiology. 2008 Mar;154(Pt 3):736-43. doi: 10.1099/mic.0.2007/013532-0.

PMID:
18310020
11.

Role of a conserved arginine in the mechanism of acetohydroxyacid synthase: catalysis of condensation with a specific ketoacid substrate.

Engel S, Vyazmensky M, Vinogradov M, Berkovich D, Bar-Ilan A, Qimron U, Rosiansky Y, Barak Z, Chipman DM.

J Biol Chem. 2004 Jun 4;279(23):24803-12. Epub 2004 Mar 25.

13.
14.

Identification of amino acids involved in catalytic process of M. tuberculosis GlmU acetyltransferase.

Zhou Y, Yu W, Zheng Q, Xin Y, Ma Y.

Glycoconj J. 2012 Aug;29(5-6):297-303. doi: 10.1007/s10719-012-9402-5. Epub 2012 Jun 6.

PMID:
22669463
15.

Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases.

Chipman D, Barak Z, Schloss JV.

Biochim Biophys Acta. 1998 Jun 29;1385(2):401-19. Review.

PMID:
9655946
16.

The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase.

Candy JM, Koga J, Nixon PF, Duggleby RG.

Biochem J. 1996 May 1;315 ( Pt 3):745-51.

17.

Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.

Harris JM, McIntosh EM, Muscat GE.

J Mol Biol. 1999 Apr 30;288(2):275-87.

PMID:
10329142
18.

Characterization of the putative tryptophan synthase beta-subunit from Mycobacterium tuberculosis.

Shen H, Yang Y, Wang F, Zhang Y, Ye N, Xu S, Wang H.

Acta Biochim Biophys Sin (Shanghai). 2009 May;41(5):379-88.

19.

The crystal structures of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactor and with an unusual intermediate.

Pang SS, Duggleby RG, Schowen RL, Guddat LW.

J Biol Chem. 2004 Jan 16;279(3):2242-53. Epub 2003 Oct 13.

20.

Glutamate 636 of the Escherichia coli pyruvate dehydrogenase-E1 participates in active center communication and behaves as an engineered acetolactate synthase with unusual stereoselectivity.

Nemeria N, Tittmann K, Joseph E, Zhou L, Vazquez-Coll MB, Arjunan P, Hübner G, Furey W, Jordan F.

J Biol Chem. 2005 Jun 3;280(22):21473-82. Epub 2005 Mar 31.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk