Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 97

1.

The reaction mechanism of FeSb(2) as anode for sodium-ion batteries.

Baggetto L, Hah HY, Johnson CE, Bridges CA, Johnson JA, Veith GM.

Phys Chem Chem Phys. 2014 May 28;16(20):9538-45. doi: 10.1039/c4cp00738g.

PMID:
24727860
[PubMed - in process]
2.

FeSb₂-Al₂O₃-C nanocomposite anodes for lithium-ion batteries.

Allcorn E, Manthiram A.

ACS Appl Mater Interfaces. 2014 Jul 23;6(14):10886-91. doi: 10.1021/am500448f. Epub 2014 Mar 24.

PMID:
24661574
[PubMed - in process]
3.

Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction.

Wang JW, Liu XH, Mao SX, Huang JY.

Nano Lett. 2012 Nov 14;12(11):5897-902. doi: 10.1021/nl303305c. Epub 2012 Oct 25.

PMID:
23092238
[PubMed]
4.

High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries.

Kim IT, Allcorn E, Manthiram A.

Phys Chem Chem Phys. 2014 Jul 7;16(25):12884-9. doi: 10.1039/c4cp01240b.

PMID:
24848297
[PubMed - in process]
5.

SnSe alloy as a promising anode material for Na-ion batteries.

Kim Y, Kim Y, Park Y, Jo YN, Kim YJ, Choi NS, Lee KT.

Chem Commun (Camb). 2015 Jan 4;51(1):50-3. doi: 10.1039/c4cc06106c.

PMID:
25360450
[PubMed - in process]
6.

LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.

Chen N, Yao Y, Wang D, Wei Y, Bie X, Wang C, Chen G, Du F.

ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10661-6. doi: 10.1021/am502352c. Epub 2014 Jun 18.

PMID:
24905851
[PubMed - in process]
7.

A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation.

Yu X, Pan H, Wan W, Ma C, Bai J, Meng Q, Ehrlich SN, Hu YS, Yang XQ.

Nano Lett. 2013 Oct 9;13(10):4721-7. doi: 10.1021/nl402263g. Epub 2013 Sep 24.

PMID:
24053585
[PubMed - indexed for MEDLINE]
8.

Full structural and electrochemical characterization of Li2Ti6O13 as anode for Li-ion batteries.

Pérez-Flores JC, Baehtz C, Hoelzel M, Kuhn A, García-Alvarado F.

Phys Chem Chem Phys. 2012 Feb 28;14(8):2892-9. doi: 10.1039/c2cp23741e. Epub 2012 Jan 19.

PMID:
22258437
[PubMed]
9.

Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries.

Gu M, Kushima A, Shao Y, Zhang JG, Liu J, Browning ND, Li J, Wang C.

Nano Lett. 2013 Nov 13;13(11):5203-11. doi: 10.1021/nl402633n. Epub 2013 Oct 2.

PMID:
24079296
[PubMed - in process]
10.

Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using η-Cu6Sn5 thin films as a model system.

Baggetto L, Jumas JC, Górka J, Bridges CA, Veith GM.

Phys Chem Chem Phys. 2013 Jul 14;15(26):10885-94. doi: 10.1039/c3cp51657a. Epub 2013 May 22.

PMID:
23698702
[PubMed]
11.

Tin-germanium alloys as anode materials for sodium-ion batteries.

Abel PR, Fields MG, Heller A, Mullins CB.

ACS Appl Mater Interfaces. 2014 Sep 24;6(18):15860-7. doi: 10.1021/am503365k. Epub 2014 Sep 3.

PMID:
25158125
[PubMed - in process]
12.

Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries.

He K, Zhou Y, Gao P, Wang L, Pereira N, Amatucci GG, Nam KW, Yang XQ, Zhu Y, Wang F, Su D.

ACS Nano. 2014 Jul 22;8(7):7251-9. doi: 10.1021/nn502284y. Epub 2014 Jun 12.

PMID:
24911154
[PubMed - in process]
13.

High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS(2) /graphene composites.

Wang YX, Chou SL, Wexler D, Liu HK, Dou SX.

Chemistry. 2014 Jul 28;20(31):9607-12. doi: 10.1002/chem.201402563. Epub 2014 Jul 2.

PMID:
24988995
[PubMed - in process]
14.

Low-temperature synthesis of amorphous FeP2 and its use as anodes for Li ion batteries.

Hall JW, Membreno N, Wu J, Celio H, Jones RA, Stevenson KJ.

J Am Chem Soc. 2012 Mar 28;134(12):5532-5. doi: 10.1021/ja301173q. Epub 2012 Mar 20.

PMID:
22420763
[PubMed]
15.

Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries.

Su D, Wang C, Ahn H, Wang G.

Phys Chem Chem Phys. 2013 Aug 14;15(30):12543-50. doi: 10.1039/c3cp52037d.

PMID:
23793542
[PubMed]
16.

Negative electrodes for Na-ion batteries.

Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S.

Phys Chem Chem Phys. 2014 Aug 7;16(29):15007-28. doi: 10.1039/c4cp00826j.

PMID:
24894102
[PubMed - in process]
17.

In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries.

Wang J, Feng CQ, Sun ZQ, Chou SL, Liu HK, Wang JZ.

Sci Rep. 2014 Nov 13;4:7030. doi: 10.1038/srep07030.

PMID:
25391220
[PubMed - in process]
Free PMC Article
18.

An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide.

Sen UK, Johari P, Basu S, Nayak C, Mitra S.

Nanoscale. 2014 Sep 7;6(17):10243-54. doi: 10.1039/c4nr02480j.

PMID:
25057812
[PubMed - in process]
19.

Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries.

Huang W, Zhou J, Li B, Ma J, Tao S, Xia D, Chu W, Wu Z.

Sci Rep. 2014 Mar 5;4:4188. doi: 10.1038/srep04188.

PMID:
24595232
[PubMed - in process]
Free PMC Article
20.

Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS.

Zhou T, Pang WK, Zhang C, Yang J, Chen Z, Liu HK, Guo Z.

ACS Nano. 2014 Aug 26;8(8):8323-33. doi: 10.1021/nn503582c. Epub 2014 Jul 14.

PMID:
25010575
[PubMed - in process]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk