Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 154

1.

Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.

Nguyen TT, Kitajima S, Izawa S.

J Biosci Bioeng. 2014 Sep;118(3):263-9. doi: 10.1016/j.jbiosc.2014.02.025. Epub 2014 Apr 13.

PMID:
24725964
2.

Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.

Nguyen TT, Iwaki A, Ohya Y, Izawa S.

J Biosci Bioeng. 2014 Jan;117(1):33-8. doi: 10.1016/j.jbiosc.2013.06.008. Epub 2013 Jul 11.

PMID:
23850265
3.

Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.

Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49. Epub 2005 Oct 13.

PMID:
16222531
4.

Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.

Heer D, Heine D, Sauer U.

Appl Environ Microbiol. 2009 Dec;75(24):7631-8. doi: 10.1128/AEM.01649-09. Epub 2009 Oct 23.

5.

Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.

Verho R, Londesborough J, Penttilä M, Richard P.

Appl Environ Microbiol. 2003 Oct;69(10):5892-7.

6.

Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

Hasunuma T, Ismail KS, Nambu Y, Kondo A.

J Biosci Bioeng. 2014 Feb;117(2):165-9. doi: 10.1016/j.jbiosc.2013.07.007. Epub 2013 Aug 3.

PMID:
23916856
7.

Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae.

Izawa S, Maeda K, Miki T, Mano J, Inoue Y, Kimura A.

Biochem J. 1998 Mar 1;330 ( Pt 2):811-7.

8.

Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.

Liu ZL, Ma M, Song M.

Mol Genet Genomics. 2009 Sep;282(3):233-44. doi: 10.1007/s00438-009-0461-7. Epub 2009 Jun 11.

9.

Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

Endo A, Nakamura T, Shima J.

FEMS Microbiol Lett. 2009 Oct;299(1):95-9. doi: 10.1111/j.1574-6968.2009.01733.x. Epub 2009 Jul 22.

10.

Genome-wide screening of Saccharomyces cerevisiae genes regulated by vanillin.

Park EH, Kim MD.

J Microbiol Biotechnol. 2015 Jan;25(1):50-6.

11.

Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.

Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H.

J Biosci Bioeng. 2012 Apr;113(4):451-5. doi: 10.1016/j.jbiosc.2011.11.017. Epub 2011 Dec 16.

PMID:
22178024
12.
13.

Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae.

Matsufuji Y, Nakagawa T, Fujimura S, Tani A, Nakagawa J.

J Basic Microbiol. 2010 Oct;50(5):494-8. doi: 10.1002/jobm.200900391.

PMID:
20806246
14.

Deletion of the glucose-6-phosphate dehydrogenase gene KlZWF1 affects both fermentative and respiratory metabolism in Kluyveromyces lactis.

Saliola M, Scappucci G, De Maria I, Lodi T, Mancini P, Falcone C.

Eukaryot Cell. 2007 Jan;6(1):19-27. Epub 2006 Nov 3.

15.

Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.

Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, Oh EJ, Zhang G, Kim KH, Jin YS.

Appl Environ Microbiol. 2015 Mar;81(5):1601-9. doi: 10.1128/AEM.03474-14. Epub 2014 Dec 19.

16.

A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.

Bera AK, Ho NW, Khan A, Sedlak M.

J Ind Microbiol Biotechnol. 2011 May;38(5):617-26. doi: 10.1007/s10295-010-0806-6. Epub 2010 Aug 17.

PMID:
20714780
17.

Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae.

Iwaki A, Kawai T, Yamamoto Y, Izawa S.

Appl Environ Microbiol. 2013 Mar;79(5):1661-7. doi: 10.1128/AEM.02797-12. Epub 2012 Dec 28.

18.

Glucose 6-phosphate and alcohol dehydrogenase activities are components of dynamic macromolecular depots structures.

Tramonti A, Saliola M.

Biochim Biophys Acta. 2015 Jun;1850(6):1120-30. doi: 10.1016/j.bbagen.2015.01.021. Epub 2015 Feb 7.

PMID:
25662817
20.

The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity.

Grabowska D, Chelstowska A.

J Biol Chem. 2003 Apr 18;278(16):13984-8. Epub 2003 Feb 12.

Items per page

Supplemental Content

Write to the Help Desk