Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 139

Similar articles for PubMed (Select 24718357)

1.

Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.

Hultberg M, Jönsson HL, Bergstrand KJ, Carlsson AS.

Bioresour Technol. 2014 May;159:465-7. doi: 10.1016/j.biortech.2014.03.092. Epub 2014 Mar 26.

PMID:
24718357
2.

Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris.

Atta M, Idris A, Bukhari A, Wahidin S.

Bioresour Technol. 2013 Nov;148:373-8. doi: 10.1016/j.biortech.2013.08.162. Epub 2013 Sep 11.

PMID:
24063820
3.

Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E.

Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS.

Bioresour Technol. 2013 May;135:157-65. doi: 10.1016/j.biortech.2012.10.100. Epub 2012 Oct 31.

PMID:
23186680
4.

Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

Kim DG, Lee C, Park SM, Choi YE.

Bioresour Technol. 2014 May;159:240-8. doi: 10.1016/j.biortech.2014.02.078. Epub 2014 Mar 3.

PMID:
24657754
5.

Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater.

Ji Y, Hu W, Li X, Ma G, Song M, Pei H.

Bioresour Technol. 2014;152:471-6. doi: 10.1016/j.biortech.2013.11.047. Epub 2013 Nov 27.

PMID:
24333623
6.

Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris.

Yan C, Zhao Y, Zheng Z, Luo X.

Biodegradation. 2013 Sep;24(5):721-32. doi: 10.1007/s10532-013-9620-y. Epub 2013 Jan 31.

PMID:
23371421
7.

Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.

Zheng H, Gao Z, Yin F, Ji X, Huang H.

Bioresour Technol. 2012 Dec;126:24-30. doi: 10.1016/j.biortech.2012.09.048. Epub 2012 Sep 25.

PMID:
23073086
8.

Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.

Münkel R, Schmid-Staiger U, Werner A, Hirth T.

Biotechnol Bioeng. 2013 Nov;110(11):2882-93. doi: 10.1002/bit.24948. Epub 2013 May 16.

PMID:
23616347
9.

Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.

Zheng H, Gao Z, Yin F, Ji X, Huang H.

Bioresour Technol. 2012 Aug;117:1-6. doi: 10.1016/j.biortech.2012.04.007. Epub 2012 Apr 10.

PMID:
22609706
10.
11.

Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.

Yeh KL, Chang JS.

Bioresour Technol. 2012 Feb;105:120-7. doi: 10.1016/j.biortech.2011.11.103. Epub 2011 Dec 2.

PMID:
22189073
12.

Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.

Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G.

Bioresour Technol. 2012 Aug;118:61-6. doi: 10.1016/j.biortech.2012.05.055. Epub 2012 May 23.

PMID:
22705507
13.

A novel cell disruption technique to enhance lipid extraction from microalgae.

Steriti A, Rossi R, Concas A, Cao G.

Bioresour Technol. 2014 Jul;164:70-7. doi: 10.1016/j.biortech.2014.04.056. Epub 2014 Apr 26.

PMID:
24836708
14.

Treatment of drainage solution from hydroponic greenhouse production with microalgae.

Hultberg M, Carlsson AS, Gustafsson S.

Bioresour Technol. 2013 May;136:401-6. doi: 10.1016/j.biortech.2013.03.019. Epub 2013 Mar 13.

PMID:
23567708
15.

Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations.

Ortiz Montoya EY, Casazza AA, Aliakbarian B, Perego P, Converti A, de Carvalho JC.

Biotechnol Prog. 2014 Jul-Aug;30(4):916-22. doi: 10.1002/btpr.1885. Epub 2014 Mar 14.

PMID:
24532479
16.

Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.

Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS.

Bioresour Technol. 2013 May;135:191-8. doi: 10.1016/j.biortech.2012.10.015. Epub 2012 Oct 16.

PMID:
23116819
17.

Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

Zhang Z, Ji H, Gong G, Zhang X, Tan T.

Bioresour Technol. 2014 Jul;164:93-9. doi: 10.1016/j.biortech.2014.04.039. Epub 2014 Apr 21.

PMID:
24841576
18.

Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions.

Adesanya VO, Davey MP, Scott SA, Smith AG.

Bioresour Technol. 2014 Apr;157:293-304. doi: 10.1016/j.biortech.2014.01.032. Epub 2014 Jan 22.

PMID:
24576922
19.

Effect of light on the production of bioelectricity and added-value microalgae biomass in a Photosynthetic Alga Microbial Fuel Cell.

Gouveia L, Neves C, Sebastião D, Nobre BP, Matos CT.

Bioresour Technol. 2014 Feb;154:171-7. doi: 10.1016/j.biortech.2013.12.049. Epub 2013 Dec 18.

PMID:
24388957
20.

Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris.

Huang Y, Hong A, Zhang D, Li L.

Environ Technol. 2014 Mar-Apr;35(5-8):931-7.

PMID:
24645476
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk