Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Effect of silica particle size on macrophage inflammatory responses.

Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K.

PLoS One. 2014 Mar 28;9(3):e92634. doi: 10.1371/journal.pone.0092634. eCollection 2014.

2.

Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages.

Sandberg WJ, Låg M, Holme JA, Friede B, Gualtieri M, Kruszewski M, Schwarze PE, Skuland T, Refsnes M.

Part Fibre Toxicol. 2012 Aug 10;9:32. doi: 10.1186/1743-8977-9-32.

3.

The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta production, ROS production and endosomal rupture.

Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao X, Narimatsu S, Monobe Y, Imazawa T, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S.

Biomaterials. 2010 Sep;31(26):6833-42. doi: 10.1016/j.biomaterials.2010.05.036. Epub 2010 Jun 18.

PMID:
20561679
4.

The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles.

Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, Lebrun A, De Gussem V, Couillin I, Ryffel B, Marbaix E, Lison D, Huaux F.

Part Fibre Toxicol. 2014 Dec 13;11:69. doi: 10.1186/s12989-014-0069-x.

5.

Serum enhanced cytokine responses of macrophages to silica and iron oxide particles and nanomaterials: a comparison of serum to lung lining fluid and albumin dispersions.

Brown DM, Johnston H, Gubbins E, Stone V.

J Appl Toxicol. 2014 Nov;34(11):1177-87. doi: 10.1002/jat.2998. Epub 2014 Apr 16.

PMID:
24737200
6.

Why does the hemolytic activity of silica predict its pro-inflammatory activity?

Pavan C, Rabolli V, Tomatis M, Fubini B, Lison D.

Part Fibre Toxicol. 2014 Dec 19;11:76. doi: 10.1186/s12989-014-0076-y.

7.

Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms.

Caicedo MS, Samelko L, McAllister K, Jacobs JJ, Hallab NJ.

J Orthop Res. 2013 Oct;31(10):1633-42. doi: 10.1002/jor.22411. Epub 2013 Jun 21.

8.

P2X7 receptor modulates inflammatory and functional pulmonary changes induced by silica.

Monção-Ribeiro LC, Faffe DS, Santana PT, Vieira FS, da Graça CL, Marques-da-Silva C, Machado MN, Caruso-Neves C, Zin WA, Borojevic R, Takiya CM, Coutinho-Silva R.

PLoS One. 2014 Oct 13;9(10):e110185. doi: 10.1371/journal.pone.0110185. eCollection 2014.

9.

Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.

Sayes CM, Reed KL, Warheit DB.

Toxicol Sci. 2007 May;97(1):163-80. Epub 2007 Feb 14.

10.

Silica-induced NLRP3 inflammasome activation in vitro and in rat lungs.

Peeters PM, Eurlings IM, Perkins TN, Wouters EF, Schins RP, Borm PJ, Drommer W, Reynaert NL, Albrecht C.

Part Fibre Toxicol. 2014 Nov 19;11:58. doi: 10.1186/s12989-014-0058-0.

11.

Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages.

Arai Y, Miyayama T, Hirano S.

Toxicology. 2015 Feb 3;328:84-92. doi: 10.1016/j.tox.2014.12.014. Epub 2014 Dec 16.

PMID:
25527144
12.
13.

Macrophage responses to silica nanoparticles are highly conserved across particle sizes.

Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, Bandyopadhyay S, Teeguarden JG, Pounds JG, Thrall BD.

Toxicol Sci. 2009 Feb;107(2):553-69. doi: 10.1093/toxsci/kfn250. Epub 2008 Dec 10.

14.

Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation.

Gosens I, Post JA, de la Fonteyne LJ, Jansen EH, Geus JW, Cassee FR, de Jong WH.

Part Fibre Toxicol. 2010 Dec 2;7(1):37. doi: 10.1186/1743-8977-7-37.

15.

The phagocytosis and toxicity of amorphous silica.

Costantini LM, Gilberti RM, Knecht DA.

PLoS One. 2011 Feb 2;6(2):e14647. doi: 10.1371/journal.pone.0014647.

16.

Suppression of nanosilica particle-induced inflammation by surface modification of the particles.

Morishige T, Yoshioka Y, Inakura H, Tanabe A, Narimatsu S, Yao X, Monobe Y, Imazawa T, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S.

Arch Toxicol. 2012 Aug;86(8):1297-307. doi: 10.1007/s00204-012-0823-5. Epub 2012 Mar 15.

PMID:
22418595
17.

Switch regulation of interleukin-1 beta in downstream of inflammatory cytokines induced by two micro-sized silica particles on differentiated THP-1 macrophages.

Zhou T, Cui X, Zhou Y, Guo J, Rong Y, Chen W.

Environ Toxicol Pharmacol. 2015 Jan;39(1):457-66. doi: 10.1016/j.etap.2014.12.017. Epub 2015 Jan 3.

PMID:
25596480
18.
19.

Silica and double-stranded RNA synergistically induce bronchial epithelial apoptosis and airway inflammation.

Unno H, Futamura K, Morita H, Kojima R, Arae K, Nakae S, Ida H, Saito H, Matsumoto K, Matsuda A.

Am J Respir Cell Mol Biol. 2014 Sep;51(3):344-53. doi: 10.1165/rcmb.2013-0281OC.

PMID:
24661197
20.

Cytokine production by co-cultures exposed to monodisperse amorphous silica nanoparticles: the role of size and surface area.

Napierska D, Thomassen LC, Vanaudenaerde B, Luyts K, Lison D, Martens JA, Nemery B, Hoet PH.

Toxicol Lett. 2012 Jun 1;211(2):98-104. doi: 10.1016/j.toxlet.2012.03.002. Epub 2012 Mar 14.

PMID:
22445670
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk